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I n t r o d u c t i o n  

/~2 is a popular and very widely used statistic in 
regression analysis to quantify the linear associa- 
tion between a response variable Y and p predic- 
tor variables, X 1 , . . .  , X p .  Let p2 represent the 
squared multiple correlation coefficient between Y 
and X 1 , . . . ,  X v. Numerous articles are available in 
statistical literature on the properties of R 2 as an 
estimator of p2 when the observations are uncorre- 
lated. However, relatively little is known about the 
behavior of R 2 when the available observations are 
correlated such as the data that  result from complex 
sampling schemes. For an example, two-stage clus- 
ter sampling results in correlated data  within clus- 
ters, with positive intracluster correlation p*. In ad- 
dition, correlated observations also arise in split-plot 
type industrial experiments where some measure- 
ments are taken on a larger-sized experimental unit 
and some other measurements are taken on smaller- 
sized experimental units within a larger-sized ex- 
perimental unit. In this case, measurements taken 
within the same larger sized experimental unit tend 
to be correlated. In this paper, we study the quality 
of/~2 as an estimator of p2 in the presence of such 
correlated data. 

Let ~ j  = ( Y i j ,  X_,.~j), w i t h  ~ j  = ( X i j l , . .  . , x, i j p )  , for 
j = 1 , . . . ,  n and i = 1 , . . . ,  k be a vector of responses 
containing a y-measurement and p x-measurements 
on the j th subject within the i th cluster. Data  set 
contain information on kn subjects from k clusters, 
each with n subjects. It is assumed that  _~j follows 
a (1 + p)-variate normal distribution with a mean 
vector #J --(ttu, ~_.~ ~ ) and a ( l + p ) x  ( l+p )cova r i ance  

*Authors wish to thank Professor Dallas E. Johnson for 
suggesting this p r o b l e m  

matrix E having the structure 

It is also assumed that  c o v ( ~ i ,  ~ , j , )  - 

{ E ®  p* 1 , f o r i - i ' , j ¢ j '  

E ® 12, for i :/: i' 

with p* > 0 where ® represents the Kroneker prod- 
uct of matrices. Let ~ - (z~l ,z~2,. . .  , ~ ) ,  for 
i -  1 ,2 , . . .  ,k, z Z -  (z~,z~, . . .  ,z~) and 

1Jn.  (1) 1 J n ) + ( l + ( n - 1 ) P * ) n  Ep. - (1 - p * ) ( I n  - n 

Thus, 

z ' ~ N ( ~ ® j _ ,  ® j _ k ,  E ® E p . ® / k ) .  (2) 

That  is, the observations within a cluster are 
equally correlated with positive intraclass correla- 
tion coefficient p* and observations from different 
clusters are uncorrelated. It should be pointed out 
that the above model is somewhat limited in that  it 
assumes the intracluster correlation of each variable 
to be equal to p*. 

Let ~ - ( y i l ,  y i2 ,  . . . , Y i r , ) ,  X [  - (x_.il, . . . , X_.ir,) , 
Y -  - ( v ~ , x ~ , . . . , z ' ) ,  x ,  - ( x i , . . . , x ' ~ ) ,  ~o  - 

~ -  ~ , ~ ; ~ ,  ~nd Z__- ~_'~g~. Then the ma- 
trix form of the regression model that  describes the 
linear relationship between Yi j  and x_~j can be ex- 
pressed as" 

y_-  j~,Z0 + xz_ + ~_._~ ~ (0. ~ z , .  ~ Ik) (a) 

where tr 2 ~ - 1 - ~ryy-~_~E~ ~_~y and Ep. as given in (1). 
Lack of independency among the observation within 

clusters invalidates usual statistical inference based 
on the ordinary least squares method. The different 
aspects of the effect of the correlated structure as 
described in equation (2) on statistical inference are 
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given in Campbell (1977), Scott and ttolt (1982), 
Christensen (1984), Thomas and l~o  (1987), Wu, 
Holt, and Holms (1988), Weerakkody and Johnson 
(1992), Rao, Sutradhar, and Yue (1993), and Weer- 
akkody and Givaruangsawat (1995). Weerakkody 
and Johnson (1992) discussed the estimation of/? in 
model (3), Wu, Holt, and Holms (1988) studied the 
effect of two-stage sampling on the testing hypothe- 
ses about fl_ and Rao, Sutradhar, and Yue (1993) 
proposed a transformation which makes the result- 
ing transformed data uncorrelated which then was 
used to develop a statistical test for testing hypothe- 
ses about ft. Our focus is the estimation of p2. The 

squared multiple correlation between Y y__ and the p 
x-variables is given by 

p2 = 

(ryy 

It is well known that, if the data were uncorrelated, 
p2 is estimated using 

n~ _ r _ ' x ( x ' x ) - ~ x ' E  
- Y'(I ,~,  - (1 /n)dn  ® (1/k)Jk)Y__. (4) 

and for large sample sizes R 2 will have the following 
properties" 

Var (R  2) = 

÷ 

Bias (R  2) = 

4(kn - p -  i)2p2(I - p2)2 

( k n -  1)(kn ÷ 1)(kn + 3) 

o ( (k~)  -~  ) 
P p2 

kn_l (I- )- 

2(kn-p- l) p2(l_p2) 

( k n - 1 ) ( k n ÷ l )  

+ o ( ( k ~ ) - 2 ) .  (5) 

Due to the correlation structure given in (2), the 
usual R 2 given in equation (4) does not have the 
same properties that it has in the presence of uncor- 
related data. In particular, large sample properties 
of the usual R 2 given in equations (5) are not valid 
for two-stage sampling data. As such we derived ap- 
proximate variance and bias formulas of the usual 
R 2 for data with correlation structure described in 
equation (2) and are given in the section below. 

2 T h e  B e h a v i o r  of  t h e  u s u a l  
R2- s ta t i s t i c  

Now we discuss the properties of the usual R 2 as 
an estimator of p2 in the presence of correlated data 

as described in (2). If p* is small, one would expect 
little or no impact on the quality of R 2 as an estimate 
for p2. On the other hand, if p* is large indicating 
strong dependency among the observations within 
clusters, one expects R ~ to perform poorly. This 
is expected because the effective dimensionality of 
the data would be much less than kn when p* is 
large. In order to study the behavior of R 2 in the 
presence of correlated data, we present approximate 
expresssions for the variance and the bias of R 2 in 
the following theorem. 

T h e o r e m :  Let kn data points be correlated as 
described in (2) and R 2 be as defined in (4). Then 
for large values of k and n 

Var(R  2) = 

Bias (R  2) = 

where m 
i+(~-i)p" 
' l - - p * )  " 

4(m- v) = p= p=)= 
m(m + 2)(m + 4) (1 - 

+ o ((k~) -~-) 

P ( 1 - p 2 ) -  2 ( m - p )  p2 p2 
m m ( m + 2 )  (i- ) 

+ o ((k~) -~) 

(k(n-1)+n(P')(k-O)2 and R(p*) - k(n - 1 ) +In(p- )]2( k- 1 ) 

Before proving the theorem above, we establish 
the following results. 

L e m m a  1" Let 

k n 

A ~  - ~ ~ ( ~ . ~  - ~.)(z,~ - ~ ) '  
i = 1  j = l  

k 

A~ - ~ ~ ( a  - z:)(~ - ~)' (6) 
i = 1  

1 ~ n  ~.~ a n d S , -  1 E k  = n where -- ~ j = 1  z~y ~:-. ~ ._.~" = i - i-ff i • 
Then 

A w  

AB 

"~ Wp+l [(1 - p*)E, k ( n -  1)], 

"~ Wp+l [(1 + (n - 1)p*)E, (k - 1)], (7) 

and A w  and AB are independently distributed 
where Wp+I(E, m) represents the central Wishart 
distribution with covariance-variance matrix E and 
degrees of freedom m. 
Proof:  Let Pnx(n-1) be the matrix such that 

1jn ) and P~ P - In-1 Such P ex- PP'  - (In - n 
1 ists since (In - ~ J , )  is an idempotent matrix of 

rank n -  1. Note that equation (1) implies that  the 
(n-l) columns of matrix P are the eigenvectors of 
E;.  corresponding to the eigenvalue ( 1 -  p*) and 
the remaining eigenvector of Ep. is (1/n)jn corre- 
sponding to the eigenvalue 1 + ( n -  1)p*. Now, let 
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[Z~l (W) , . . . , z_ , ( ,_ l ) (w)] -  [~ . l , . . . , z~ , ]P  and ~ = 
[ z ~ , . . . , z ~ , ] ( 1 / n ) j ,  for i -  1 , . . , k .  Then by equa- 
tion (1), z~j (w)'s are a sample of k(n-1) independent 
variates from g ( 0 ,  ( 1 -  p*)E). Further, since 

A w  - - - 

i=1  j = l  

k n - 1  
= 

i= l  j = l  

A w  "~ W p + l ( ( 1 - p * ) E , k ( n - 1 ) ) .  In addition, equa- 
tions (10 and (2) also imply that the ~ ' s  are a sam- 

ple ofk  independent variates from N(#,  1+("-1)P* E) 
71 

and hence 

AB 

k 
_ - - 

i=1 

"~ Wp+l((1 + ( n -  1 ) p * ) E , k -  1). 

Finally, since ~ j (w) ' s  and z_-i's are independent, so 
are A w  and AB. This completes the proof of the 
Lemma 1. 

Next, we establish the following result which ap- 
proximates the distribution of the weighted average 
of two independent central Wishart matrices. This 
approximation is similar to that given in Satterth- 
white (1946) for the Chi-Square variates. 
L e m m a  2: Suppose W1 ~ Wp+l(E, ml) ,  W2 "~ 
Wp+l(E,m2) ,  and that  W1 and W2 are independent. 
Then for large ml and m2, 

1 
W -- [alW1 -+- a2W2] 

ml + m 2  
a 

• w~+~(z ,m) .  (8) 
m l + m 2  

_ )~ ~m~+~]m~ and m (~m~+~2r~ where a -  almx-l-a2m2 a~mlq-a~rn2 " 

Proof :  Since W1 and W2 are independently dis- 
tributed, the characteristic function of W is given 
by 

Cw(T) - E{exp(-i trace(alW1T+a2W2T)))ml+m2 

= ¢w1( el T)¢w2( a2 T) 
ml  + m2 ml q- m2 

2ial 
= IIp+l - TEl -m'12 

ml + m 2  

lip+ 1 _ 2ia2 TEl_m2~2" 
ml q-m2 

Let Aj for j - 1 , . . . ,  1 + p be eigenvalues of TE. 
Then - 2 1 n ( ¢ w ( T ) )  - 

~--~p+ 1 ml z._.,j=l l n ( 1 -  2i al Aj ) ml+m2 

l ln(  l _ 2i as Ai ) 

K"p+l (__2i a~ Aj)-}- (--4 a~ )' 2) 
m l  z..,j = 1 m l + m 2  ( m l + m z  '~j 

+m2 z..~j=l --2i Aj --4 mxq-m2 (m lq -m 2)  z 

__ V"p+I( a )~j)+ (--4 a2 2) 
-- m z...,j=l --2iml+rn 2 (mx+m2)2/~j 

V,p+ l ln( l _ 2i a )~j ) 
m z..,,j = 1 m i t r e 2  

= -21n 11io+1 - 2iml+m 2 . 

Therefore, 
for large samples, W A. ml ~rn2 Wp+l (E, m). This 
completes the proof of the lemma 2. Now we the 
prove Theorem. 

P r o o f  of  T h e o r e m :  Using the result given in 
lemma 1 and substituting ml = k ( n - 1 ) ,  m2 = k - 1 ,  
el = ( l - p * ) ,  and a2 = (1+  ( n - 1 ) p * ) i n  the lemma 
2 above, 

1 a 

k n -  1 kAW' + AB) ~ k n -  1 T~, ,~  vvp+l ~z~, m )  

k ( n -  1)+ [n(p* )]2 ( k -  1) 
where a -  k(n-1)+n(p*)(k-1) and m is as given in 

the theorem. The variance and the bias results of R 2 
in the theorem directly follows from the above since 
R 2 is derived from A = (Aw + AB) using the invari- 
ance principle, of maximum likelihood estimators. 
This completes the proof of the theorem. 

When p* = 0, R(p*) = 1, m = k n -  1, and hence 
the results given in the theorem coincides with those 
in equations (5). Note that  the equations (5) con- 
tain var(R 2) and B i a s ( R  2) in the presence of kn 
uncorrelated data. Let R~v and R~ be the usual 
estimators of p2 based on within-cluster informa- 
tion and between-cluster information, respectively. 
When p* --, 1 (i.e., when the observations within a 
cluster are perfectly correlated), m --+ ( k -  1) and 
hence the variance and the bias of R 2 is similar to 
those of R~. As such, the usual R 2 estimator is not 
quite acceptable as a estimator of p2, particularly 
when the intracluster correlation is large. Based on 
results of a simulation study that  we conducted, we 
recommend the use of R~v to estimate p2 when k is 
small. For large k, we recommend w R  2 + ( 1 - w ) R ~  

where w - k(,~-l) to estimate p2 k n - 1  
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