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1. I N T R O D U C T I O N  

In a stratified random sampling design in- 
volving multiple response variables, optimiz- 
ing sample allocation to different s trata  is 
an old problem. In the literature this prob- 
lem has been dealt with partially. One ap- 
proach is based on averaging the s t ra tum 
variances of the variables and using it to 
optimize the allocations. Since the choice 
of weights in averaging is arbitrary, the op- 
timality property remains unclear. Notable 
works are those of Dalenius (1953), Yates 
(1960), Hartley (1965), and Kish (1976). 
The other approach is concerned with min- 
imizing the cost of survey while the sam- 
pling errors of the estimates do not exceed 
certain preassigned upper bounds. This is 
accomplished by convex programming. No- 
table works are those of Yates (1960), Hart- 
ley (1965), Kokan and Khan (1967), Chat- 
terjee (1972) and Bethel (1989). In this ap- 
proach, however, no optimality criterion is 
offered when the cost of survey is preas- 
signed which is usually the case. Further, 
convex programming is suitable when the 
number of variables and strata  are small. 
When the number  of variables is large, say 
over hundred, convex programming is im- 
practical. The cost involved to ensure that  
all the sampling error constraints are satis- 
fied becomes unacceptable. 

To obviate these difficulties, particularly 
from a practioner 's point of view, it is neces- 
sary to deal with the optimization problem 

in a more comprehensive manner.  To that 
end we have to take into account all of the 
following considerations. 

(i) optimality criterion should be based on 
an aggregate measure of sampling er- 
rors i.e. joint sampling error of all the 
estimates. 

(ii) when cost of survey is preassigned we 
should term the allocation as opt imum 
for which the joint sampling error of 
estimates is minimum. 

(iii) when an upper bound to the joint sam- 
pling error of estimates is preassigned 
we should term the allocation as op- 
t imum for which the cost of survey is 
minimum. 

(iv) when the number of response variables 
is small and we wish to set upper bounds 
to each individual sampling errors of 
estimates, we should term the alloca- 
tion as opt imum for which the cost is 
minimum while satisfying each individ- 
ual sampling error constraints. 

(v) keeping the above considerations as the 
basis we should be able to develop al- 
location formula such that  it becomes 
identical with the Neyman (1934) allo- 
cation in the single variable case. 

In this paper a simple weighted Eucledean 
distance function is proposed as a measure 
of joint sampling error of all the estimates. 
Formulae for sample allocation are then de- 
rived which meets the above requirements. 

2. M A T H E M A T I C A L  P R E L I M I N A R -  
IES 

In a stratified random sampling design ni 
denotes the number of units sampled from a 
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population of Ni units in the i-th s tratum; 
i - 1 , 2 , . . . , I .  We assume that  we have 
records of values of Y independent variables, 
Yj; j - 1 , 2 , . . . ,  J; on these units. ~j ,  flij; 
S?j, ,S2j; d e n o t e  the mean and variance of 
the j - t h  variable in i-th s t ra tum of the pop- 
ulation and sample respectively. The pop- 
ulation mean Yj is est imated by a function 

y j -  E(Ni f l i j ) /N;  N -  E Ni, E ( f ] j ) -  

Yj. Variance of the est imate is given by 
V(flj) - Y-'~(N~S~j)/(N2ni)- ~ (N~S~j ) /  

z i 

N 2. Following Bethel (1989) - to make our 
subsequent results c o m p a r a b l e -  we will ne- 
glect the second term and write the vari- 
ance approximately as V(f/j ) -- E(N? Syj )/ 

i 

(N2ni). In that  case the coefficient of vari- 

ation (cv) of ~j is cv(flj) - { E(N?S?j)/ 
1 

N2ni)~-~ which is used as a measure of 

the sampling error of estimate. The cost 
function is writ ten as g(x) - ~ C i n i ;  Ci 

i 
being the cost of enumerat ion per unit in 
the i-th s t ra tum. Writing ni - 1/xi, Aij = 

w r i t e  - 

Aijxi. An inequality relation cv(flj) <_ 

uj; uj > 0, can also be writ ten as {cv2(fjj) 
2 /uj}  _< 1 or ~ a i j  x i _< 1 where aij = 

2 For the sake of brevity we shall also ni j /u j  . 
use the following notations and symbols: 

(i) A will denote the matr ix  [Ai j] IxJ:  A i j  = 
( N ?  

(ii) Aj - (Alj ,  A2j , . . .  AI j ) '  will denote the 
j - t h  column vector of A. 

(iii) a will denote the matr ix  [aij]IxJ: aij = 

(iv) aj - ( a l j ,  a2j, . . ,  al j ) '  will denote the 
j - t h  column vector of a. 

(v) x will denote the vector x - (Xl,X2, 
• . .  ~ X I )  t • 

(vi) Notation g(X)a:x<l will denote a con- 
j - -  

strained function g(x) under the con- 
straint a l j X l  -Jr- a 2 j x 2  ~ . . . ~ a i j x I  <_ 1. 

(vii) Notation g(x)~j~<l; j - 1, 2 , . . . ,  J will 

denote a constrained function g(x) un- 
der J different constraints a~x _< 1, 
a~x _< 1 , . . . , a ~ x  _< 1. 

(viii) Notation g (x)~( ,~x_~  ) < 0 will mean 

J 
a constrained function g(x) under the 
single constraint  (a[  x - 1 ) + (a~x - 1 ) + 
. . .  + ( a ~ x -  1) < 0. This single con- 
straint  will also be referred as an ag- 
gregate constraint as opposed to an in- 
dividual constraint like ( a ~ x -  1) < 0. 

3. D E F I N I T I O N  OF A D I S T A N C E  
F U N C T I O N  D(R) A N D  O P T I M A L -  
I T Y  C R I T E R I A  

If CV(f l j )  is plotted along the j - t h  axis of a J 
dimensional space then ~ cv 2 (flj) is simply 

1 
the square of the Eucledean distance that  
can be used as a measure of the joint sam- 
pling error of the J independent  estimates 
zjj; j - 1, 2 , . . . ,  J .  In an actual survey we 
may be more concerned about  the sampling 
error of ~j as compared to tha t  of zjk. To ac- 
commodate  this si tuation we assign certain 
weights to each of the sampling errors of es- 
t imates and define, in general, a weighted 
distance function D(R) as 

D ( R )  - -  WlCl)2(yl W2cv2(lj2) . . .  , 

+ Wj v (f j) (3.1) 

where Wj > 0 is an arbi t rary  weight. Based 
on this D(R) we define the opt imali ty  crite- 
ria as follows: 

(i) Under a preassigned upper  bound Co to 

the cost of survey, the allocation will 
be termed as op t imum for which D(R) 
is minimum subject to the condition 
g(x) < C0. 
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(ii) Under a preassigned upper bound v 2 
to the joint sampling error of estimate, 
the allocation will be termed as opti- 
mum for which the cost of survey is 
minimum subject to the condition D(R) 

~2. 

(iii) When the number of response variables 
is small we may wish to assign upper 
bounds yj, j - 1 , 2 , . . . , J ,  to the in- 
dividual sampling errors of estimates 
)j. In that  case the allocation will be 
termed as opt imum for which the cost 
g(x) is minimum subject to the condi- 

2 tions cv2(flj ) <_ ~,j ; j - 1,2,. . . ,  J. 

4. A L L O C A T I O N  U N D E R  P R E A S -  
S I G N E D  U P P E R  B O U N D  T O  T H E  
C O S T  O F  S U R V E Y  

In this case, under the optimality criterion 
laid above we have to minimize the joint 
sampling error D(R) with respect to Xl, x2, 
. . . , xx  under the constraint g(x) _< co. In 
other words we have to find the minimum 
of a constrained function D(R)g(x)<_~o. This 
is done by finding the free minimum of a 
function F(x,  7) of (I  + 1) variables xi;i - 
1 , 2 , . . . , I  and 7, 7 > 0, where 

F(x,  7) - D(R) + 7(g(x) -- c0) 

( ~ : E w ' A I  x + ~  E x ~  
j i 

c0)(4.1) 

To find this minimum we solve the equa- 
tions 

0F(x ,  7) = E WjAij 7(ci/x 2 - ~ ) - 0  
g)x i J 

i -- 1 , 2 , . . . , I ( 4 .2 )  

0r(x ,  ~) = ~ ( ~ , / x , )  - ~o - o 
07 ~ 

(4.3) 

and obtain the allocation in terms of xi as 

xi - {  ~ ~/(E.7 WjAij)ci },/  

{co ~ (  E ,  WjAij)/ci }; (4.4) 

i - 1 , 2 , . . . , I  

With large number of variables we treat all 
as of equal importance. In that  case we can 
write Wj - 1 for all j .  Then, assuming 
ci - c (4.4) reduces to the simple form 

x i - { ~ i  i ~ A i i } / { n ~ / ~  Aij} 

(4.5) 
Remembering that  Aij - (N~ S~j)/(Yj2N 2) 
and dropping the subscript j ,  (4.5) further 
reduces to ni - {N, Si/ E Ni Si )n which is 

Z 

the well known Neyman allocation in the 
single variable case. 

5. A L L O C A T I O N  U N D E R  P R E A S -  
S I G N E D  U P P E R  B O U N D  T O  T H E  
J O I N T  S A M P L I N G  E R R O R  O F  ES-  
T I M A T E S  

In this case our problem is to minimize the 
cost of survey g(x) with respect to Xl~X2, 

. . . ,  xi under the constraint D(R) < v2. In 
other words we have to find the minimum 
of a constrained function g(X)D(R)_<~:. This 
is done by finding the free minimum of a 
function F(x,  7) of (I  + 1) variables x i ; i -  
1, 2 , . . . , I  and 3',7 > 0, where 

F(x,  7) - g ( x ) +  "/(D(R) - ~,2) (5.1) 

: g(x) + 7 ( E  WjA] x - y 2 )  
J 

To find this minimum we solve the equa- 
tions 

0F(x,~)  ~ 
= - - ~  + .y ~ W ~ A ~  - 0 (5 .2 )  

Oxi x i j 

aF(x,  ~) = Z W~Aix - ": - 0 
07 j 

(5.3) 
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and obtain the allocation in terms of xi as 

x i - -  
i~ j  WjAij~. ~ c ir .  

i - 1 , 2 , . . . , I  (5.4) 

With large number  of variables we can, as 
before, assume the weights Wj - 1. Then 
(5.4) reduces to the simple form 

x i - { v 2 x / ~ } / { ~ / ~ j  AiJ~i ~/ci~j Aij}. 

(5.5) 
For j - 1, dropping the subscript j and 
remembering that  ai - Ai/v 2, (5.5) further 

x i - ~ , / {  ~ Z v/ciai } reduces to w h i c h  
i 

again is the Neyman allocation in the single 
variable case. 

6. A L L O C A T I O N  U N D E R  P R E A S -  
S I G N E D  U P P E R  B O U N D S  T O  T H E  
I N D I V I D U A L  S A M P L I N G  E R R O R S  
O F  E S T I M A T E S  

If the number of variables is small we would 
like to preassign upper bounds to each indi- 
vidual sampling errors of estimates. In that  
case our problem is to find the minimum of 
the constrained function g(x)¢~,(gj)<,~ i.e. 

g(x)~jx<x; j - 1, 2 , . . . ,  J under J individ- 

ual constraints. For an exact mathemati-  
cal solution we would have to find the free 
minimum of a function F(x ,  ,k) of ( I  + J)  
variables xi and )U; i - 1 , 2 , . . . , I ;  j = 
1 , 2 , . . . ,  J where 

F(x, X)- 9(x)+ Z l) 
J 

(6.1) 

It has been shown (Kokan and Khan, 1967) 
that  there exist a unique set of values (Xl, 
x ~ , . . . ,  x}, AI, A2 , . . . ,  Ay) for which F(x ,  ,~) 
is minimum although a mathematical  solu- 
tion by solving the ( I  + J)  equations 

OF(x,,~)/Oxi - O, OF(x,,k)/ OAj - O, is 
not possible because of nonlinearity. We 
therefore take an alternative route using the 
distance function D(R). 

Since the individual constraints cv2(fli) <_ 
2 2 vj can also be writ ten as Wj cv 2 (~lj) <_ Wj vj , 

by summing over j we can write an aggre- 
2 

3 3 

2 In the formula at (5.4) o r  D(R  ) <_ ~ W j u j .  
3 

2 putt ing v 2 - ~ WjlJj  w e  immediately get 
3 

an expression for x i as 

2 

J 
x i - -  

i~J W j A i j ~ I c i ~ "  

i - 1 , 2 , . . . , I  (6.2) 

2 and remembering that  Writing kj - Wj llj 
2 t CV2(flj) -- vjajx the individual constraint 

2 Wjev2( f ] j )  ~ WjIJj can be writ ten as kjajx 
<_ kj. We can then rewrite our problem in 
an alternative form namely, minimize 
g(x)kj, ,x<kj;  j -- 1, 2 , . . . ,  J.  This in turn 

3 ~ 

means we have to find the free minimum of 
a function F(x ,  k) of ( I +  J)  variables xi and 
kj; i -  1 , 2 , . . . , I ;  j - 1 , 2 , . . . ,  J ,  where 

F(x ,  k ) -  g ( x ) +  E k j ( a j x -  1) (6.3) 

Since )~j is unique, comparing (6.1) and (6.3) 
we conclude that  we must have kj - )U or 

2 Substi tuting W j  vj2 _ ~3 o r  W j  - )~j / vj 
the value of Wj in (6.2) and remembering 

2 Ai j  -- v,j aij w e  c a n  directly w r i t e  a n  e x p r e s -  

s i o n  for x i as 

Xi---- ~ ; 

i - 1 , 2 , . . . , I  (6.4) 

where c~ - ) ~ j / E  )~J" 
1 
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Note that  this result is identical with what 
was earlier obtained by Bethel (1989). He 
used Khun-Tucker Theorem (1951) and 
wrote the expression (6.4) following an ana- 
logical expression in the univariate case, 
where as using the distance function D(R) 
the result follows directly and easily. 

Also note that  x i is expressed in terms of 
a function ( £ j / E  £J), not in terms of indi- 

vidual values of £j that  would result from 
an exact mathematical  solution. Hence xi, 
as expressed in (6.4), is still not the opti- 

* However the true value of mum solution xi. 
the function ~ - ( A j / E  A j) can be succes- 

J 
sively approximated by computer program- 
ruing for which several software p a c k a g e -  
including one outlined by Bethel (1989) - is 
available. And therefore xi can be brought 
sufficiently closer to x* i so as to satisfy all 
the individual sampling error constraints. 

7. C O N C L U S I O N  

In this paper we have provided a compre- 
hensive, unified t reatment  to the problem 
of optimizing sample allocation in the mul- 
tivariate case using a distance function D(R) 
as a measure of joint sampling error of all 
the estimates. Particularly, from a prac- 
tioner's point of view this will be helpful 
to calculate opt imum sample allocation to 
different s t rata  under any of the following 
situations, namely: 

(i) When cost of survey is preassigned and 
we want to minimize the joint sampling 
error of all the estimates. 

(ii) When an upper bound to the joint sam- 
pling error is preassigned and we want 
to minimize the cost of survey. 

(iii) When upper bounds to each individual 
sampling errors of estimates are pre- 
assigned and we want to minimize the 
cost of survey. 

The formulae provided are easily applicable 
particularly when the number of variables 
are very large and also in the special case 
when the number is small. 
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