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Abstract: Markov chain designs are developed 
for the sampling of a continuous two-dimensional 
spatial domain. These designs include as spe- 
cial cases systematic sampling, balanced systematic 
sampling, and stratified random sampling with one 
sampling unit per stratum. Designs are compared 
on the basis of their anticipated variances under 
superpopulation models which include both large- 
scale variation and small-scale variation. An exam- 
ple of the implementation of Markov chain sampling 
for a multiphase soil mapping project in Crawford 
County, Iowa is given. 

Introduct ion 

The design for the Crawford County soil mapping 
project is a three-phase sample. In the first phase, 
1600 points are selected and surface horizon data 
are collected. In the second phase, 400 points are 
subsampled from the 1600 Phase 1 points, and data 
on several variables are collected for all horizons 
down to some specified depth. In the third phase, 
200 of the Phase 2 points are selected. Labora- 
tory analyses are conducted on about six horizons 
at each of the Phase 3 points, for a total of about 
1200 laboratory samples. Data elements collected 
during the three phases include general landscape 
features at the point (aspect, gradient, etc.), and 
horizon-specific physical characteristics of the soil 
(color, effervescence, % clay/sand, depth to mot- 
tles/carbonates/redoximorphic conditions/free wa- 
ter, etc.). 

Points are located precisely (to within a few me- 
ters) using a global positioning system, but fea- 
tures at the point cannot be determined without 
a field visit. Since data cannot be collected on 
roads, ditches or railroads, and since data can only 
be collected after authorization near buried cables 
and pipelines, it is desirable to avoid aligning or 
equally spacing the points. Delays from drawing 
additional points or obtaining authorization are un- 
desirable since the best field season is the relatively 
short time between spring thaw and crop emergence. 

Selection of the points at the first phase is via 
a controlled version of one-per-stratum sampling. 

The idea is to draw a point sample which is well- 
dispersed spatially, like a systematic (or grid-based) 
sample would be, but is protected against systematic 
sources of error (such as roads, underground cables, 
etc.) through additional randomness. Systematic 
designs can be extremely inefficient for populations 
with systematic features like trends and periodici- 
ties (e.g., Madow and Madow 1944, Cochran 1977, 
Bellhouse 1988). 

Spatial control is provided by making the X and 
Y coordinates of the sample points evolve according 
to Markov chains, and so the design is referred to 
as a Markov chain (MC) design. See Breidt (1995) 
for discussion of MC designs in the one-dimensional, 
finite population case. The Markov chains used in 
the Crawford County soil mapping project are two- 
dimensional and have a continuous state space. 

Quenouille (1949) makes a distinction between 
aligned and unaligned spatial sampling designs. 
Given the potential problems with aligned points in 
our application, we consider only unaligned designs. 

2 Markov chain designs 

Let (x0, y0) denote the longitude and latitude of 
the southwest corner of Crawford County, which 
will be represented as a rectangular spatial domain, 
D C IR 2. A sampling rate is determined and the 
county is accordingly split into rectangular strata 
with sides of a degrees of longitude and b degrees 
of latitude. Number the rows of strata i -- 1 , . . . ,  I 
and the columns j - 1 , . . . ,  J.  

Denote by ¢(.) the cumulative distribution func- 
tion of the standard normal. Points selected accord- 
ing to the M C design are then 

{ ( X i j , l ~ j )  : i =  l , . . . , I ;  j = l , . . . , J } ,  

where 

1) 

Xi j  = xo + a ( j  - 1) + X/~, 

Yij - yo + b ( i -  1) + Y/~, 

_ ( W ( ~  ), j - l ,  

¢1V-'(I'),,~-I + W(1)~/1 - ¢12, j - 2 , . . . ,  J, 
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and 

{ 1, 
V.. (2) W(? ) ~/1 ¢2 2, i - 2, , I. (P2 i _ 1 , j ' 4 -  - -  . . .  

Here, {W(~ )} is independent and identically dis- 

tributed (iid) N ( 0 , 1 ) a n d  {W~(~ )} is iid N(O, 1), 

independent of {W(])}. The {V/~ k)} are first- 
order autoregressive processes with standard normal 
marginal distributions. 

Because of Gaussianity, the processes { ¢  (vi~l)) } 

and ~(I)(V/~2))~ are reversible, meaning that the 

probabilistic structure remains the same whether 
the sample is drawn east to west or west to east, 
north to south or south to north. Interestingly, for 
Ck ~ 0, reversibility holds in this design if and only 
if {W;!~ )} is Gaussian (Weiss 1975). 

The parameters Ck dictate the type and degree of 
control: for ¢1 - 1, the sample in a given row is 
systematic after a random start (SY); for ¢1 = 0, 
the row sample is stratified simple random sam- 
pling with one point per s t ratum (ST); and for 
¢1 = - 1 ,  the row sample is balanced systematic 
sampling (BA) (Murthy 1967). In spite of this con- 
trol, all points are equally likely; that is, the uncon- 
ditional probability density function on any of the 
I × J s trata is uniform. 

Denote realizations of Xij and ~ j  by 

xij -- x o + a ( j - -  1) +xi*j and yij - y o + b ( i -  1) +yi*j. 

The conditional probability density function of Xij 
given X i , j -  1 = X i , j -  1 is  

f ( x i j l x i , j _ l )  = 

a ( - ¢ 1  **} 
(1 - ¢~)1/~ exp 2(1 - ¢12) ~ 1  ( ~ ,  ~ , j - 1 )  

× leo, ol (~5)Ito,ol (~,~-1) 
where 

+¢~¢-~(~;,~_1) ~ 
--  2 ( I ) -  1 ( ;gi*j)(I)-1 (X~,j - 1),  

and the conditional probability density function of 
~ j  given ~ _ 1 5  - yi-15 is 

f(v~.~ Iv~-l,.~) = 

(1 - ¢2)1/2 exp 2(1 - ¢~)ff¢'(Yii' Yi-l , j)  

× tto,bl (v~*j)I[o,~,] (v~_ x,.~). 

r{ i j .1} 

rH} 

Figure 1: Conditional densities for X~j = Xii - 
xo - a(j - 1) given Xi , i -1  = xo + a(j  - 2) + x~*,j_ 1 
(¢~ = 0.7~). 

Figure 1 shows conditional densities of X~. given 
different possible values of X*5_I, where ¢1 = 0.75. 
Note the ridge of high density; with high proba- 
bility, the sampled x-coordinate in s t ra tum (i, j)  is 
near the same relative position as the sampled x- 
coordinate in s t ra tum ( i , j -  1). If ¢1 - 1, the 
sampled z-coordinates would be in exactly the same 
relative position from s t ra tum to s t ra tum across the 
row, and each conditional density would have all of 
its mass on the ridge. If ¢1 - 0, the sampled z- 
coordinates would be independent from s t ra tum to 
s tratum and all the conditional densities would be 
fiat (uniform on [0, a]). 

Figure 2 shows a possible Markov chain sample in 
five rows and five columns using ¢1 = ¢2 = 0.75. 
Lines represent s t ra tum boundaries. The sampled 
locations in s t ra tum (i, j)  and its four nearest neigh- 
bors are labeled. 

The sampled location (Xi j ,  Yij) is independent of 
all (Xi,j , , l~,j ,)  to the northwest (i < i', j > j ' ) ,  
to the northeast (i < i', j < j ' ) ,  to the south- 
east (i > i ' , j  < j ') ,  and to the southwest (i > 
i ' , j  > j~). Given the sampled locations for the four 
nearest neighbors, the sampled location (Xi j ,  Yij) 
is also conditionally independent of (Xi,j , ,  ]~,j,) for 
j '  ¢ j -  1, j, j + 1 and conditionally independent of 
(Xi , , j ,Yi ,d)  for i' # i -  1, i , i  + 1. 
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. . . .  

• • 

, 

• X(I+I,J},YNIJI 

~{i,}-I),Yli,J-I) Xli,II,Y(i]) l(i,j+l},Y(i,j+l] 

x(i-l,l),y~-~,i) 

Column j=1,2 ..... J 

Figure 2: Example map of points selected via one- 
per-stratum Markov chain design with ¢1 - ¢~ - 
0.75. Lines represent stratum boundaries. Sampled 
locations in stratum (i, j) and its four nearest neigh- 
bors are labeled. 

3 E s t i m a t i o n  u n d e r  M C  

Suppose that the population parameter of interest 
is 

tz - z(x, y) dx dy. 
"/ ~ 0  0 

A design-unbiased estimator of tz under any MC 
design is 

I J 

tz -- ab E E z(Xij ,  Yij). 
i=l j=l 

The design variance of [z, Vp (iz), depends on all the 
values of the study variable z(x, y) in the domain D 
as well as the covariance structure of the Xij's and 
Y~j 's, and so is not easily used for comparing designs. 

4 A s u p e r p o p u l a t i o n  m o d e l  

Following Cochran (1946), assume that the values 
of the study variable z(x,y)  are realizations of a 
stochastic process Z(x, y) following some model, ~. 
Designs can then be compared on the basis of an- 
ticipated variance, Ee [Vp (tz)]. Note that the total 
variance, over both design and model, of tz is 

v.~ (i~) - 

s o  that 

E~ Iv, (~1] - 

v~ (e.  [i~]) + E¢ [v~ (i~)] 
v~ (E~ [i~]) + E. [v~ (i~)], 

v, (E~ [~,]) + E, [v~ (~,)] - v~ (E, [~.]). 

Since tz is design-unbiased, V~ (Ep [tz]) is constant 
across MC designs and will be ignored in what fol- 
lows. 

A common geostatistical model for spatial data 
(e.g., Cressie 1991, §2.3) is 

~. z(~, y) - ~,(~, u) + ,(~, y) + ~'(~, u), 

where/~(z,y) is the non-stochastic mean structure 
or large-scale variation and {e(x,y) • (x,y)  E D} 
is a zero-mean, second-order stationary stochastic 
process with autocovariance function (ACVF) 

Cov e { e(x, y), e(x + dx, y + dy) } - 7(dx, dy). 

The ACVF describes the small-scale variation in the 
data. 

A particular version of the above large-scale vari- 
ation model is the linear trend model, 

p(x, y) - ax + fly, 

where, without loss of generality for variance com- 
putations, the intercept is taken to be zero. This 
model has been considered by Bellhouse (1981) for 
a two-dimensional lattice process. 

Resu l t  1 The contributions of the linear trend 
/~(x, y ) -  ax + fly to the total variance are 

and 

[ ( )] 
i - - 1  j = l  

([ vp E~ ab ~(X~j ,~ j  - 
i = 1  j=l 

which simplifies to 

O~ 
(ab)2 ~2a2I 

12 
(ab)2 f1262J 

i 2  , 
( ab)2 t~2 a2 I+O 2 6 2J 

12 

I~ J even, 
I even, J odd, 

I odd, J even, 

I, J odd, 

under BA; 

(a~2 a2a2IJ + fl~b2Ij 
12 

358 



under ST; and 

(ab)2u2a2Ij  2 + ~26212J 

12 

under SY. D 

R e s u l t  2 The contri- 
butions of the spatially-autocorrelated error e(x, y) 
to the total variance are 

[ ( )] Ep V~ ab Z Z c(Xij, Yij) -- 
i=1 j = l  

I J I J 

(ab)2 Z Z Z Z 
i=1 j = l  i~=1j~=1 

E,, [7 (IX j - X ,j, I, - I)] 

and 

( [ ]) Vp E¢ ab Z Z e(Xij, Yij) --0.  
i=1 j = l  

One possible choice for the ACVF of c is the ex- 
ponential ACVF 

where cr > 0 and 5 > 0. This ACVF has been 
considered by Mat@rn (1947), Zubrzycki (1958)and 
H£jek (1961), among others. See Dan (1950)and 
Cressie (1991, §2.3.1) for other possible ACVF 
choices. 

5 V a r i a n c e  c o m p a r i s o n s  

From the above results, the total variance can be 
evaluated by computing the design variances of 
~'-'J X* I , • • /._,j=l ij and ~ i=1  Y/j and the design expectation 
of 3' (IXij - X i , j ,  I, IYij - Yi,j,  I). In general, analyt- 
ical evaluation of these quantities is difficult, but 
Monte Carlo evaluation is straightforward. Note 
that drawing repeated MC samples from D is far 
simpler than drawing repeated realizations of the 
stochastic process {Z(x, y)}. See Ripley (1981, §2.5) 
for some discussion of simulating spatial processes. 

Figure 3 shows the effect of the Markov chain 
sampling parameter ¢ and the spatial dependence 
parameter 5 on the total variance, for an autocorre- 
lated superpopulation with no trend and with cr - 1, 
a = b = 10 and I = J = 10. The contours show the 
ratio of the total variance under the MC design with 
¢1 = ¢2 = ¢ to the total variance under unaligned 

\ 

J.0 -o'.s 0:0 0:s 1:0 
MC Design 

Figure 3" Ratio of  total variance under MC de- 
sign to total variance under SY. Model has a - 

- O, (r - 1. Each design uses a - b = 
10 and I - J - 10. Design expectation of  
model variance was computed over 1000 indepen- 
dent replications of  the sample for each MC de- 
sign (¢1 - ¢2 - - 1 . 0 0 , - 0 . 9 5 , . . . ,  0.95, 1.00) with 
each value of  the exponential A C V F  parameter (5 - 
0.05, 0.10, . . . ,  0.90, 0.95). 

systematic sampling. Design expectations and vari- 
ances were computed over 1000 independent repli- 
cations of the sample for each design. 

For a broad range of 8 values, MC designs with 
high positive values of ¢ are the most efficient de- 
signs, having total variances within 5% of the total 
variance under SY. Other MC designs, including ST 
and BA, are less efficient. As 8 increases, the spa- 
tial dependence disappears, and all designs have the 
same efficiency. 

As 8 decreases, all designs again have the same 
efficiency. This phenomenon was pointed out 
by H£jek (1961), who used it as a counterexam- 
ple to a conjecture in Zubrzycki (1958) that SY 
was more efficient than ST under certain condi- 
tions. The result is somewhat surprising, since in 
one dimension a non-negative, nonincreasing and 
convex autocovariance function implies that SY 
will be the most efficient equal probability design 
(Cochran 1946, H£jek 1959, Bellhouse 1988). This 
kind of optimality result can be extended to plane 
sampling only under special conditions (e.g., Que- 
nouille 1949, Dalenius, H£jek and Zubrzycki 1960, 
Bellhouse 1977, Iachan 1985). 

Figure 4 shows the effect of the spatial dependence 
parameter (5 on the total variance for a population 
with c~ = fl = 0.025, and ~ = 1 under a variety 
of MC designs with a - b - 10 and I - J - 10. 
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Ita=O. 

... delta=0.95 

-1'.0 ";.5 0:0 0:5 110 
MC Design 

Figure 4: Effect of  the exponential A C V F  param- 
eter di on the ratio of  total variance under MC de- 
sign to total variance under SY. Model has a - 
fl - 0.025, ~r - 1. Each design uses a - b - 10 
and I - J - 10. Design expectations and vari- 
ances were computed over 1000 independent repli- 
cations of  the sample for each MC design (¢1 - ¢2 - 
- 1 . 0 0 , - 0 . 9 5 , . . . ,  0.95, 1.00). 

Design expectations and variances were computed 
over 1000 independent replications of the sample for 
each design. As 5 decreases, the spatial dependence 
strengthens, and SY becomes relatively more effi- 
cient. As 5 increases, the spatial dependence disap- 
pears, the trend dominates, and the optimal design 
shifts away from SY toward BA. 

Figure 5 shows the effect of the trend parameters 
c~ and fl on the total variance for a population with 

= 0.25 and ~r = 1 under a variety of MC designs 
with a -  b -  10 and I -  J -  10. Design expecta- 
tions and variances were computed over 1000 inde- 
pendent replications of the sample for each design. 
As a and fl decrease, the spatial trend weakens, and 
SY becomes relatively more efficient. As c~ and fl in- 
crease, the trend dominates, and the optimal design 
shifts away from SY toward BA. 

In all cases considered in Figures 3-5, MC de- 
signs with high positive values of ¢ which are strictly 
less than one are never far from optimal. For a 
single study variable of interest, z, with a given 
trend function and ACVF, an optimal MC design 
could be selected. In applications, however, many 
study variables are of interest, and their trends and 
ACVF's  are unknown. This is the case in the Craw- 
ford County soil mapping project. In these circum- 
stances, a reasonable procedure is to choose large 
positive values of ¢ which are strictly less than one, 
e.g., ¢1 = ¢2 = 0.75, the values used for Crawford 

)ha=beta=O.O 

~ alpha=beta--O.05 

alpha=beta=O.075 

.io -0.s o:o o:s 1:o 
MC Design 

Figure 5" Effect of  the trend parameters c~ and fl 
on the ratio of  total variance under M C  design to 
total variance under SY. Model has 6 - 0.25, (r - 1. 
Each design uses a -  b -  10 and I -  J -  10. Design 
expectations and variances were computed over 1000 
independent replications of  the sample for each M C  
design (¢1 - ¢2 - - 1 . 0 0 , - 0 . 9 5 , . . . ,  0.95, 1.00). 

County. 
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