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The next section provides the theoretical details 
of the asymptotic normality results. 

If sampling is done with replacement, the 
sample estimates derived from large surveys can be 
assumed to approximate normal distribution 
providing a valid base for statistical inference. With 
the use of unequal probability without replacement 
sampling schemes at the first stage, the estimated 

primary unit totals ~ will no more be independent. 
Therefore in single as well as multiple stage sample 
designs involving the use of unequal probability 
without replacement sampling schemes, the general 
linear estimator of population total or mean may not 
follow the normal distribution. Consequently, the 
estimation of confidence intervals and tests of 
hypotheses may not be based on the normal 
approximation assumptions. 

The work presented in this manuscript builds 
on Rosen's (1972) results and pertains to establishing 
in a more direct way that for large scale sample 
surveys under some general conditions on the size of 
units, the general linear estimator of population total 
from the single stage cluster sample designs using 
unequal probability without replacement sampling, 
approximates the normal distribution. 

1. Introduction 

If the number of psu's N is small, the sampling 
distribution of the estimator may be evaluated by 
considering all possible samples of a given size n. 
For large N (and n) the process becomes 
prohibitively laborious. In this case, Madow (1949) 
introduced the permutational central limit theorem 
for finite population sampling. Rosen (1972) studied 
the asymptotic nomality for successive sampling 
without replacement through the coupon collector's 
problem. Building upon Rosen's work, Sen (1979, 
1980) studied the asymptotic distribution theory of 
estimates of finite population total in single and 
multistage sampling with varying probabilities 
without replacement using martingale approach and 
in relation to the extended coupon collectors 
problem. However for unequal probability case, a lot 
of work towards asymptotic normality remains to be 
done (Sen, 1988). 

2. Asymptotic Distribution 

Successive sampling without replacement refers 
to drawing units one after the other without 
replacement from a population of size N. At each 
draw the probability that the unit i is drawn is 

proportional to the single draw probability p~ if it 

remains in the population and zero otherwise. Let I 7 
denote the estimator of population total Y under 

successive sampling without replacement and I ~' the 
corresponding estimator from successive sampling 
with replacement sampling discarding previously 
selected units. For the later scheme of sampling, let 

m n denote the random sample size or waiting time in 
Rosen's terminology to obtain n distinct units. Rosen 

(1972) showed that ~'andI~*are equivalent in 
distribution i.e., 

1 7 ~  "* (2.1) 

Rosen also provided the asymptotic 

approximations for the inclusion probabilities ~i, its 
variance and covariance when n and N are large and 
under some additional general conditions on the size 
of units. The approximation to the inclusion 
probabilities entails replacing successive sampling 
without replacement by the one with replacement by 
adjusting the sample size so that variance remains 
the same asymptotically. With this adjustment the 

resulting approximate estimator I?' becomes a linear 
combination of independent random variables. 

The general strategy adopted in this paper to 
obtain the asymptotic normality results for the linear 

A 

estimator Y involves the following three steps: (i) 

Show that Y and I 7. are convergent equivalent, i.e., 

1 ( Y ' - ~ ) - ~ O  (2.2) 
(n) 

(ii) Show that ratio of the variance of the general 

linear estimator 17' and the variance of the estimator 

I ~'' goes to 1 i.e., 
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V(~ / V(~') ---} 1 (2.3) 

(iii) Show that the standardized form of I )'' satisfies 
the Liapounov condition and therefore approximates 
the standard normal distribution so that, 

~ N[E(~"), V(Y')] ~ 1 (2.4) 

The result (i) may be proved easily either by 
showing that Anscombe condition 
[Anseombe(1952), Sen & Singer (1993), Example, 
8.3.1] is satisfied or by using martingale approach. 
Section (2.1) deals with (ii) and section (2.2) with 
(iii). 

2.1 Convergence  of Variance 

Let 
" w',r, 

= f - r - y  - r  
i=l ~ i  

=~--' -1  Y~, (2.5) 
i=1 

^ 

where Y is the Horvitz-Thompson estimator of the 
population total Y and Y~ is the i th psu total. Also 

w~ - 1 if i th unit is selected in the sample of size n 

and zero otherwise and 

P(wl = 1) = n:, and 

P(wl - 0 ) -  1 - ~ ,  
(2.6) 

E(~") = 0and variance is given by the well 
known Yates-Gmndy variance formula: 

V(~') = (2.7) 

Hartley and Rao (1962) and Rao (1963) 

provided the following approximation for V(Y') 

correct to O(N)" 

V(Y') = ~ 1 - - - - - - r~ ,  Y~ - (2.8) 
i=1 n 

This approximation is good for (i) Narain's 
Method [Narain (1951), Yates & Grundy, (1953)], 

(ii) PPS Systematic Random Sampling (Goodman & 
Kish, 1950) and (iii) Yates-Grundy Rejective 
Sampling [Yates and Grundy (1953)]. For each of 

these three procedures n~ = np~. For a discussion of 
these and other unequal probability sampling 
procedures, see Brewer & Hanif (1983). 

Given that a combination (N,n) and the 

corresponding (P~,P2...,PN) can be regarded as an 
element of the sequence of sampling situations 

{( ,Pk % ))®k=~ where pk=(pk~,p~:. . . ,p~) 

N 

nk =(%~,%:. . . ,n~v) and )-"~p~ = 1. Consider the 
i = l  

following two conditions: 

limk_,, ° N k = oo (2.9) 

limsup~_,® max,.p~ < oo (2.10) 
mir~ p~ 

where N k is the population size, p~ is the single 

draw probability of the i ~ unit and r:~. is the 

inclusion probability of the i th unit in a sample of 

size n k corresponding to the k th sampling situation. 
We shall drop the subscript k for the simplicity of the 
presentation unless essential. 

If (2.9) & (2.10) are satisfied, then the 

approximation for % is given by, 
rr~ = 1 - e -pit(n) 

, (2.11) 

where the function t(x) may be termed as the 
revised sample size and is implicitly def'med by the 
relationship. 

N 

N - x  = ~ e -p:C~) (2.12) 
i = l  

Using this approximation, let 

" w'; = 

N 

= w; (1-e-','(") )-' (r, - Y), (2.13) 
i=1 

where Y = Y /N .  Also w'~' = 1 if i th unit is selected 

in the sample of size n and zero otherwise and are 
independent for i = 1,2,...,N and 
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P(w': = I) = n,~ = 1 - e -e''(') and 

P(w~ =0)=l - r (~  =e -''("). (2.14) 

E(I 7'' ) = 0 and 

:: 1 - ~  
V(Y") = ~ ,, (Y~ - Y'): (2.15) 

~=I % 

The estimator V(I f ) provides an 

approximation for V(I e) which may easily be 
realized in simple random sarnpling case where 
p~ = l / N ,  % = n / N  so that the equation (2.15) 
reduces to: 

N 
V( If' ) - N -  n ~ ( y~ - ~): ' 

f=l 

N -  I [Nu (1- f ) ~  I N  (2.16) 

where f = n / N. The factor ( N -  1) / N vanishes out 
when N is large. 

With the use of some additional general 

conditions, it can be shown that V(~" ) converges to 

V(~"') in the unequal probability sampling case. 
Rewriting (2.8) as 

V(~> = ~ 1---(1 n-1  r:,)(Y~_-Y+ Y ' - - ~ I  ~- 
iffil ~ i  k, ~'/ 

: ~  1----/1 n-l-~%)[(y~-Y)~- 
i=1 '~i \ n 

,)(1 
and dividing by (2.15), 

V(IY> 1 ~ l _ . _ / l _ n - 1  / 
= ,, 

v(f t '  ) v ( f t '  ) ,=, . . , .  n 

(2.17) 

: I 1(1"1) 1 
+ N2V(~')L,=, ~, ~, n r:, (Np,-1) 2 

2Y fn_~(1 n-1  )( Y)(1  )(2.18> . . . . . .  rr,, Yi- -Np, 
+ NV( I f' ) ,=I n 

Since, 

1 ( l n l )  1.  
ui = + O(N'-') (2.19) 

Replacing u~ by r:~, the first term of (2.18) 
goes to 1. The second term may be written as: 

Y~W ~ W, 
N: V( f t' ) ,=, , ,  

-1)] 

N~V(f ' ) ,_, W N Pw 

:w 

N~ v( f: ) 

where = - - - - - - %  , W =  W~ so that 
11 i=1 

1 N 
.-~~W~=I,= ~w=~"W~p,/W, ~=~ .dp , /N=l /N  

and CV(Npi ) is a weighted coefficient of variation 

of Npi values with respect to W~. 

Under the restriction that Np~ values would 
only be varying in close proximity of 1, we assume 

that IN'fipw - h/if[ = o(1) and CV(Np~) = o(1). It is to 

note that p~ = O(N -1 ), ~ = O(1) and W~ = O(1) so 

that W=O(N). Given these results, it is easy to 

verify that ffw = O(N -1) making the whole 

expression inside the square bracket o(1). Also 
since Y and V(Y") arc O(N), the factor outside the 

square brackets is O(1) resulting in the entire second 

term to be o(I). We may write as: 
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~"~ W~ ( Np, -1)2 = o(1) 
i=1 

(2.20) 

The third term may be written as: 

V3 - -  
2YW I,~-~ __~~ (y _ y)( 1 _ Np~ )] 

The expression outside the square bracket is 
O(1). A reference to the Cauchy-Schawartz 
inequality immediately shows that the expression 
inside the square brackets is negligible. According 
to the inequality: 

[ ' ~  W--2-i ( Y ) ( 1 ) 1 2   w.g- -Np  _< 

i=1 - - ~ ( N p , - 1 )  2 (2.21) 

The first expression on the right hand side is 

O(1). From (2.20) the second expression is o(1) 
making the entire right hand side of (2.21) to be 

o(1). Moreover since W~ and therefore W are finite 
and positive quantities, 

I ]2 w,(): 
,=1-=~, i - Y ) ( 1 - N p , )  =o(1) 

N 

:=> ~"~'--~~ (Yi -Z) (1 -Np , ) :o (1>  (2.22> 
i=1 

We have seen that the first term converges to 1 
and the second and third are o(1) concluding that 

V(~"') approximates V(~") under the conditions 

that n---) oo and N---)oo simultaneously and p~'s 

vary only in the close proximity of 1/N. 

2.2 Asymptotic Distribution 

The estimator I ~'' is the sum of independently 

but not identically distributed random variables Y~' 
where 

Y/' = w'/ (1-e-p't(n)) -1 (Yi - ~) (2.23) 

E ( ( ' )  = Y~ - Y = la'~ (2.24) 

e-Pd(n) 
V(~")  = 1 - e  -p:(") (Y~ - g)2 = o.;2 (2.25) 

Also E ( ~  ) = 0 and V(I f ) is given by (2.15). 

Let Z" = Y" / [V(Y")] v2 (2.26) 

In order for Z" to approximate the standard 
normal distribution, we need to show that the 
Liapounov condition is satisfied. (see Sen & Singer 
(1993), Theorem 3.3.2). 

Introducing the subscript k, consider again the 
infinite sequence of sampling situations 

) ) o o  
{(Pk rq }k=1 where P k = (Pk,,Pk2"',P~r) and 

r K = (r%~ ,r%2 .... r~¢) defined earlier. Assuming that 

for some 8 > 0 the moments of order 2 + 8 exist and 
have bounded limits as limk_,~ o N k = oo, i.e., 

a l, _z,i '+' < lira supk_,® Nk 
(2.27) 

lira supk_~.o max1<_,~N, ~k, -  ~ l a+s = O(N k ) 

::O 

1 
limsuPk_,® "~k maxl~i~r' 

O(Nk -8/(2+s) ) = o(1) (2.28) 

This proves the Liapounov condition implying that 

~'  ~ N(0, 1) (2.29) 

or 17' ~ N(0, E a'~ 2 = V(~"' )) (2.29) 

Note that N k is the population size, y~. is the 

i th observation and ~ is the population mean 

corresponding to the k th sampling situation. 
This completes the proof that, 

- N(0, )) (2.29) 
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where V(Y' ) is given by (2.7). 
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