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In IRS a sample of Tax Year 1988 individual tax 
returns contains the differences between the examiner- 
determined value (E) and the taxpayer-reported values 
(R) for each of 15 income sources. Portions of these 
differences (D = E - R) are detectable from information 
documents such as wage and interest statements. These 
information document portions are available for the 
54,088 timely-flied returns but not for the 2,208 
delinquent returns. 

For this study, interest income portions (Y0) are modeled 
using logistic regression from the 8,173 timely-filed 
returns having positive interest differences (D > 0). The 
resulting model is then used to impute the portions to 
the 121 delinquent returns that had positive differences. 
Both the imputed microdata portions and their averages 
are used for economic modeling of tax compliance. 

To measure the variance, we use 100 sets of 
imputations from 100 balanced bootstrap samples. 
Calculating the mean square error (MSE) is more 
challenging. Here, for each delinquent filer, we find a 
nearest neighbor matching timely filer. We estimate the 
bias by imputing to these nearest neighbors and 
comparing the imputed values with the true values. 
Adding the squared bias to the variance yields the mean 
square error. 

To determine the accuracy of the MSE estimates, we 
create two "similar" variables in which the true values 
for the delinquent fliers are known. We then repeat the 
imputation and error estimation procedures and compare 
our MSE estimates with those based on the true values. 

GENERAL M E T H O D O L O G Y  

Upon examining the timely-filed returns for the portions 
of interest income for which IRS has information 
documents, we noticed that 7,788 of the 8,173 returns 
(or 95 percent) had information document portions of 
either zero or one. Assuming all the information 
document portions are zero or one allows us to use 
logistic regression for our imputation. 

Regression Model Based Imputation 

First, a logistic regression is run on the timely-filed 
returns to model the information document portion for 
interest income. The model is then applied to the 
delinquent fliers to impute the portions. Since it is 
unclear whether it is preferable to use fractional 
imputed portions or to have them converted to zeros and 
ones, both cases are studied. 

Variance and MSE Estimation 

Estimates of the average imputed portion for delinquent 
fliers contain both sampling error and imputation error. 
Thus, estimates of their variance and mean square error 
need to contain both sampling and imputation error. 
Individual microdata imputed portions contain only 
imputation error. Here we measure only the variance 
and mean square error due to imputation. 

To measure the mean square errors (MSEs), we 
measure the squared bias and the variance and add them 
together. To measure the bias, each delinquent filer is 
matched to a timely filer. These timely fliers, called 
pseudo-copies, act as surrogates for the delinquent 
fliers. Imputing to these pseudo-copies provides an 
estimate of the bias. To measure the variance, 100 
balanced bootstrap samples are drawn and 100 logistic 
regression models are computed. These 100 models are 
then used to create 100 sets of imputations to both the 
delinquent fliers and the pseudo-copies. The variances 
and MSEs can now be calculated. 

Simulated Variables 

To determine the accuracy of the mean square error 
estimation procedure, we create variables that are 
similar to the variable we tried to impute, Y0 , the 
information portion for interest. Here, however, we 
create variables that can be calculated for the delinquent 
fliers. 

To create our first simulated variable, Yl , we first 
divide the taxpayer-reported interest by the examiner- 
determined interest. Most of these ratios are neither 
zero nor one, whereas, our original variable, Y0 , is 
zero or one 95 percent of the time. (This was the 
reason we used logistic regression.) To correct this we 

339 



forced all but the 385 lowest nonzero ratios to one. 
The fractional values were then ratio adjusted upward. 

Our second simulated variable, Y2 , is the same ratio 
used in y l but without the correction. 

Since we have the true values here, we can determine 
the accuracy of our pseudo-copy MSE estimates. 

THE IMPUTATION REGRESSION MODEL 

Original Variable 

To model the information document portions for interest 
income, y0(n), for delinquent filer, n, SAS "fast 
backwards elimination" logistic regressions with a 
"significance level of staying" of 0.05 were run on the 
timely-filed returns. The modeling variables, xi(n), 
were: the intercept; nine of ten occupation class 
indicators; nine of ten examination class indicators; the 
interest D (= E - R); the interest D/E ratio; the 
interest E / total income E ratio; the interest D / total 
income D ratio; the squares of the last four amounts; 
and for each of the 15 income variables, an indicator 
variable of whether the income was positive and an 
indicator variable of whether the income was negative. 

Simulated Variables 

Modeling the simulated variables, yl(n) and y2(n), is 
carried out in a similar fashion but with different sets of 
modeling variables. 

For yl(n), the modeling variables were: the intercept; 
nine of ten occupation class indicators; nine of ten 
examination class indicators; and for 13 of the 15 
income variables, an indicator variable of whether the 
income was positive and an indicator variable of 
whether the income was negative. 

For y2(n), the modeling variables were: the intercept; 
nine of ten occupation class indicators; nine of ten 
examination class indicators; the ratio of examiner- 
determined interest divided by the total examiner- 
determined income; and indicator variables for six 
income types. 

CREATING PSEUDO-COPIES 

Pseudo-copies are timely tilers that act as surrogates for 
the delinquent fliers. They are needed to estimate the 
mean square errors. Pseudo-copies are created 
separately for each of the three variables under study. 

To 
1. 

11 

0 

create the pseudo-copy (PC): 
Run SAS fast backwards elimination regression on 
the entire file of timely-filed returns (TF), using the 
same independent variables as is used for logistic 
regression imputation. 
Apply the resulting model to each of the 8,173 
returns in the timely-filed file (TF) and the 121 
returns in the delinquent-filer file (DF) to obtain a 
match variable. 
Find for each DF return a nearest neighbor TF 
return, using the match variable. 

CREATING BOOTSTRAP SAMPLES 

A set of balanced bootstrap samples are selected for 
each of the three variables. They are created from 
sampling the remainder (RTF) of the 8,173 timely-filed 
returns less the 121 pseudo-copy (PC) returns. 

The method used to select balanced bootstrap samples 
was introduced by Davison, Hinkley, and Schechtman 
(1986) and described in Hall (1992). 

To 
1. 

11 

Q 

create B= 100 bootstraps samples of RTF: 
Create a string of B= 100 identical copies of the 
sample (RTF). Thus, the string contains B*n units 
where n is the number of returns in RTF. 
Randomly permute the units in this string. This can 
be done by assigning each return a random number 
and then sorting by it. 
The first n units is bootstrap 1, the second n units is 
bootstrap 2, etc. 

CREATING BOOTSTRAP IMPUTATIONS 

To calculate bootstrap imputations from each bootstrap 
sample, from RTF: 
1. Convert the variable (Y0, Yl , or Yz) to zero or one 

and obtain the logistic regression model coefficients 
for each bootstrap sample. (The conversion is done 
as follows: For Y0 and Yl, all nonzero values are set 
to one. For Y2, all values greater than 0.5 are set to 
one. ) 

2. Calculate the logits by applying these coefficients to 
the delinquent-filer file (DF). 

3. Invert the logits to obtain the fractional imputed 
values. 

4. For the study of the non-fractional imputed value 
case, convert the fractional imputed values to ones 
or zeros depending on whether they are greater than 
uniform(0,1) random numbers, R(b,n), for bootstrap 
(b) by return (n). 

5. Apply steps 2 through 4 to the pseudo-copy (PC). 

340 



VARIANCE ESTIMATION MEAN SQUARE ERROR ESTIMATION 

Variances of Individual Imputations 

For the individual imputations, the variances calculated 
include only the imputation variation, not the sampling 
variation from the population variance. 

The variance estimate of the original model individual 
imputations to the delinquents for the original variable, 
Y0, is: 

V(Y°) -N" B - i  : ( Y° ( b ' n ) -Yo (n ) ] , 

where b denotes bootstrap, n denotes the n ~ delinquent 
file return, and :~(n) is the average across bootstraps. 

This estimate applies to both imputing fractions as well 
as the converted imputations. Also, the variances for 
the simulated variables, Yl and Y2, are similarly def'med. 

Variances of the Average Estimates 

Estimates of the average information document portions 
contain both sampling and imputation error. Their 
estimates of variance need to include both these errors. 

The variance estimate of the original model estimate of 
the average, 

Y o  - Y o ( n )  , 

for the original variable, Y0, is: 

B 

- _ 1 ~_aOS0(b)_.~0.)z v(v0) B - 1 _  

where 370(b) is the average over all delinquent fliers n 
for fixed bootstrap b and ~. is the average of ~(b) 
across bootstraps. 

Again, this applies to both imputing fractions as well as 
the converted imputations. Also, the estimators and 
their variances for the simulated variables, Yl and Y2, 
are similarly def'med. 

These bootstrap variances are slight overestimates since 
balanced bootstraps of size n were used instead of 
independent bootstraps of size n-1. Also, finite 
population corrections and stratification differences are 
assumed to be small. 

The mean square errors (MSEs) of the imputations 
cannot be directly calculated. However, if imputations 
to the pseudo-copies are good proxies for imputations to 
the delinquents, then the mean square errors can be 
estimated from the pseudo-copies. 

MSEs of Individual Imputations 

For the individual imputations, the mean square errors 
can be estimated two ways. 

First, the mean square error can be estimated by 
applying the original logistic regression model to the 
pseudo-copy and calculating the mean square difference 
between the pseudo-copy imputed value and its true 
value. (E.g., 

4Y-, 
MSE~O, o) - 1 ~ (yo( np) -Yo r(np)) 2 

N n~,:l 

where yo(np) is the pseudo-copy original model 
imputed value and 

yor(np) is the pseudo-copy true value.) 

A second estimate can be obtained by making that 
calculation for each bootstrap and taking the average. 
(E.g., 

MS  vo)_l  <y0<b, 
Bt~=l Nnp=l 

where y0(b,np) is the pseudo-copy bootstrap b model 
imputed value.) 

For the individual imputations for variables Yl and Y2 
the true mean square error is calculated from the 
delinquent tilers. (E.g., 

MSEr(v l )_  1 ~ (Yl( no)-Ytr(nd)) 2 
N n,=l 

where rid denote delinquent file returns.) 

MSEs of the Average Estimates 

For the estimates of averages, the mean square error 
can be estimated three ways. 

First, after applying the original logistic regression 
model to the pseudo-~py, the mean square error can be 
estimated by calculating the variance of the mean for 
the pseudo-copy and adding the squared bias from the 
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pseudo-copy. (E.g., for 

Yo - -~ n~= a Yo ( n ) ' 

MSEa(Y°)-[N IN-IS£(y°(n) -y°})2]: I  

- -Yo + [Yo., ~ , 

where Y0 

Y0r t 

is the average of the y0(nv) and 
is the average of the pseudo-copy true 
values.) 

A second estimate is obtained by making the above 
calculation for each bootstrap and then averaging the 
bootstrap estimates. (E.g., 

MSE2 (V o) - -~- N _--'--~nl : I 

+ 

where y~ (/,) is the average of the y0(b,~). ) 

The third estimate is obtained by replacing the variance 
of the mean in the first estimate by the bootstrap 
estimateof the variance. (E.g., 

B 

{ MSE~ 0~ o ) - B - 1  ~=1 
m ~ 

+[Vo.. - Y o r  i z } , 
R R 

where .~.., is the average of the .~. (/,) .) 

For estimates of averages for variables Yl and Y2 the 
true mean square error is calculated from the delinquent 
fliers by adding the variance of the mean to the squared 
bias. (E.g., 

1 (y l (na )_~ t )  2 MSEr(vt) - N - 1  : 

+t -G 1 • ) 
d 

RESULTS 

The results are given in Table 1. Originally, reviewing 
only the results for the original variable, Y0, it appeared 
that we successfully estimated at least part of the bias 
and may have reasonable estimates of the root MSE. 
At that time we did not know how successful the 
pseudo-copying procedure was. We proceeded to 

simulate variables to f'md out. The analysis below of 
the simulated variables indicates that our success may 
indeed be limited and that care must be taken in 
determining which variable to analyze and how to 
proceed with the matching to create the pseudo-copies. 

Mean Values 

For the original variable, Y0, we notice that the pseudo- 
copy true mean of 0.810 is slightly larger than the 
timely filer true mean of 0.804. This indicates that 
pseudo-copying may be picking up some of the 
characteristics of the delinquent fliers. We also notice 
that the pseudo-copy imputed mean of 0.851 differed 
from the pseudo-copy true mean. This gave us an 
estimate of bias of 0.041. The same bias was obtained 
whether we imputed fractions or converted them to 
zeros and ones. The question remains as to what 
proportion of the bias we actually captured. 

For the first simulated variable, Y l , we notice that the 
true mean of the delinquent fliers (0.360) was 
substantially less than the that of the pseudo-copy 
(0.582), which was in turn less than that of the timely 
fliers (0.681). This shows that pseudo-copying has 
captured some, but not all, of the characteristics of the 
delinquent fliers. The disappointing news is that for 
imputing fractions, we did not capture any bias 
(0=0.582-0.582) in the pseudo-copy when a significant 
true bias (0.281 =0.581-0.360) exists. For imputing 
zero-one's, it appears that a portion (0.030=0.612- 
0.582) of the bias (0.252=0.612-0.360) has been 
captured. However, it is more likely that we captured 
rounding variation rather than bias. 

For the second simulated variable, Y2, analysis of the 
true means again indicates that pseudo-copying has 
captured some of the characteristics of the delinquent 
fliers. Here, for imputing fractions, we also captured 
part (0.059=0.49443.435) of the bias (0.264=0.492- 
0.228). Here, we speculate on two reasons why we 
captured bias here but did not for the first simulated 
variable. First, the OLS regression matching may have 
picked up the non zero-one nature of some of the 
observations that was not picked up by the logistic 
regression modeling. Second, quantitative variables 
were used to model this simulated variable but not for 
the first simulated variable. 

Standard Deviations 

As expected, the standard deviations for imputing 
fractions are substantially lower than those for imputing 
zero-one's. The standard deviations are similar across 
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the three variables. FUTURE RESEARCH 

Root Mean Square Errors 

For imputing individual records, two methods of 
estimating the root mean square error were available. 
Both methods seemed to do equally well. They both 
had a small downward bias. For imputing fractions for 
the first simulated variable, the root MSE estimates 
were around 0.44 whereas, the true root MSE was 
0.47. Results were similar for the second simulated 
variable. For imputing zero-one's the picture is not as 
clear, due to the added conversion variation. This 
suggests that the root MSE estimates for the original 
variable are usable, though they may be slightly biased 
downward. There is no preference between the two 
root MSE estimates. The original model estimate may 
be less biased but is likely to have more variance. 

For estimating averages, three methods of estimating the 
root mean square error were available. The additional 
estimate, the bootstrap estimate appears to be less 
stable. For example, for imputing fractions for the first 
simulated variable, a value of 0.008 is unrealistically 
low. The other two estimates substantially 
underestimate the root MSE. For imputing fractions 
for the first simulated variable estimated root MSE's 
around 0.045 were well below the true value of 0.225. 
For the second simulated variable the estimate of 0.07 
is proportionately closer to the real value of 0.266. The 
cause is the inability of the pseudo-copying to estimate 
the bias. This was discussed in the mean values 
section. Again, there is no preference between the two 
estimates. Thus, for the original variable, there is 
considerable likelihood that the root MSE estimates are 
severe underestimates. 

CONCLUSIONS 

It appears that creating simulated variables and 
evaluating them was a very valuable experience. It 
showed that the root mean square estimates for the 
individua/estimates are likely to be usable, but not for 
estimating averages. It showed that the pseudo-copying 
technique had weaknesses. Care must be taken in 
determining which variables to analyze using pseudo- 
copying, what method to use for matching, and which 
variables to use in the regressions. This study showed 
just how difficult estimating bias can be. It 
reemphasizes that only obtaining the true values will tell 
us how much bias remains. 

To complete this study, ideally, we would try to obtain 
the real information document portions for the 
delinquent fliers. This is not possible. The study of the 
simulated variables suggests that alternative methods of 
matching with perhaps a different set of independent 
variables be studied. It also suggests that we try to 
determine some criteria to evaluate when we expext the 
method will succeed and what percent of the bias we 
may anticipate obtaining. 
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Table 1. Means, SD's, and Root MSE's of Imputing Fractions/Zero-Ones's for Individual and Average Estimates for the Original & 2 Simulated Variables 

Method 

Timely 

Filer 

0.810 

0.810 

0.810 

0.810 

T r u e  

M e a n  

0.851 

0.851 

Delinquent 

Filer 

T r u e  

M e a n  

Imp. 

M e a n  

T r u e  

M e a n  

Pseudo 

Copy 

Analysis of Original Variable Y0 (Interest: Infomation Document Portion)" 

Individual Records: 

Imputing Fractions 0.804 n.a. 0.857 

Imputing Zero-One' s 0.804 n.a. 0.884 

Estimating Averages: 

Imputing Fractions 0.804 n.a. 0.857 

Imputing Zero-One' s 0.804 n.a. 0.884 

Analysis of Simulated Variable Y1 (Interest" Adjusted Voluntary Reporting Percentage): 

0.581 

0.612 

0.582 

0.582 

0.582 

0.582 

Individual Records" 

Imputing Fractions 

Imputing Zero-One's 

0.435 

0.435 

0.025 

0.343 

0.435 

0.435 

Estimating Averages: 

Imputing Fractions 

Imputing Zero-One's 

0.851 

0.851 

0.007 

0.030 

0.681 

0.681 

0.681 

0.681 

0.360 

0.360 

0.360 

0.360 

0.581 

0.612 

Analysis of Simulated Variable Y2 (Interest: Voluntary Reporting Percentage): 

Individual Records: 

Imputing Fractions 0.557 0.228 0.492 

Imputing Zero-One's 0.557 0.228 0.438 

Estimating Averages: 

Imputing Fractions 0.557 0.228 0.492 

Imputing Zero-One's 0.557 0.228 0.438 

Notes: n.a. true values not available for the original variable 
N/A bootstrap estimates of root MSE not applicable to individual record estimates 

Imp. 

M e a n  

Estim. 

Std Dev 

T r u e  

Rt MSE 

n ° a .  

n .a .  

n ° a .  

n .a .  

Original 

Model 

Estim. 

Rt MSE 

0.394 

0.538 

0.054 

0.042 

Ave. of 

Bootstrap 

Estim. 

Rt MSE 

0.395 

0.533 

0.053 

0.049 

0.582 

0.612 

0.582 

0.612 

0.494 

0.512 

0.494 

0.512 

0.031 

0.433 

0.009 

0.036 

0.027 

0.455 

0.007 

0.038 

0.469 

0.687 

0.225 

0.252 

0.411 

0.587 

0.266 

0.211 

0.441 

0.640 

0.044 

0.036 

0.375 

0.616 

0.071 

0.079 

0.443 

0.620 

0.045 

0.046 

0.379 

0.595 

0.073 

0.078 

Bootstrap 

Estim. 

Rt MSE 

N/A 

N/A 

0.041 

0.054 

N/A 

N/A 

0.008 

0.050 

N/A 

N/A 

0.059 

0.087 


