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1 .  I n t r o d u c t i o n  
Many surveys of human populations are 

conducted using a sample design that involves the use 
of stratified multistage sampling. Often a relatively 
small sample of Primary Sampling Units (PSUs) is 
selected, using explicit and/or implicit stratification. 
Then, within each PSU, further sampling takes place to 
select the ultimate sample of units to be surveyed. 

This type of design can give rise to a difficulty 
when making inferences about population subgroups. 
It may frequently happen that there is a particular 
subgroup of interest which contributes a substantial 
number of ultimate units to the sample, but which is 
drawn from only a few of the PSUs. The fact that the 
sample size is substantial means that, absent very 
extreme design effects, the subsample representing the 
population subgroup in question is very likely to give 
estimates for many parameters of interest that are 
sufficiently reliable to be useful. We are not discussing 
here the problem of rare a subpopulation with a sparse 
sample. 

The fact that the sample is derived from only a 
few PSUs, however, makes reliable inference difficult. 
This is because, using any of the techniques available to 
give approximately unbiased estimates of sampling 
variance, the resulting precision of the sampling error 
estimates derived will be low. This means that, even 
though the estimate of the parameter of interest may 
have small or moderate variability, with a coefficient of 
variation (relative standard error) of less than ten percent 
for example, the unreliability of the estimated sampling 
variance makes it difficult to construct confidence 
intervals with the stated levels of coverage. 

This is because direct variance estimators must, 
explicitly or implicitly, estimate the between PSU 
component of variance. The precision of this is limited 
by the number of PSUs from which the subpopulation 
is drawn. The true number of degrees of freedom for 
variance estimation might well be considerably less 
than the number of PSUs for three reasons. First, the 
variance estimator used may be designed to reflect the 
impact of PSU stratification. This will decrease the 
bias of the variance estimates, but also decreases the 
number of degrees of freedom. The use of paired PSUs 
for use in variance estimation is an example of this that 
is used very frequently in practice. With such an 
approach the maximum number of degrees of freedom 
achievable is reduced by almost fifty percent. Second, 
the sampling distribution within some PSUs (at least) 

may be affected by outliers in the population, which 
reduces the precision of variance estimates (that is, the 
number of degrees of freedom). Third, whereas the full 
sample may consist of PSUs of about equal size, when 
considering subpopulations, the distribution across 
PSUs (each containing some members of the 
subpopulation) may vary considerably. This can 
drastically reduce the number of degrees of freedom 
available. 

In this paper we examine this phenomenon more 
closely for a particular survey for which, after the fact, 
there was considerable interest in subpopulation mean 
estimates derived from just a few PSUs. Using a 
simulated population, we examine the true levels of 
confidence interval coverage obtained using standard 
large sample procedures. We particularly wished to find 
out if there was evidence, for the kind of population 
involved, of a "breakdown point" in the sample size of 
PSUs, above which confidence interval coverage had 
acceptable rates, but below which it was unsatisfactory. 
In fact, as will be seen, we found that the problem of 
having a small number of degrees of freedom was 
somewhat overshadowed by the unpredictable 
relationship between sample size and sampling error 
when using systematic samples of small size. We did 
not find evidence of a particular breakdown point for 
sample size, although it is clear that, with these kind of 
data, it is unwise to estimate a confidence interval 
directly from a sample of two PSUs. 

In Section 2, we describe the sample design for 
the private school population for the 1994 Trial State 
Assessment of Educational Progress. Section 3 
describes the simulated population that we constructed. 
In Section 4, we describe the procedures used to obtain 
true sampling errors and true confidence interval 
coverage for samples ranging from two to thirty PSUs. 
Section 5 includes a summary of findings and our 
conclusions. 

2 .  The  1994 Trial  State  Asse s sment  of  
E d u c a t i o n a l  Progress  - Pr ivate  School  
C o m p o n e n t  
In 1994, 45 states and jurisdictions participated 

in the National Assessment of Educational Progress 
(NAEP) state assessment of reading at grade 4. The 
NAEP program is administered by the National Center 
for Education Statistics (NCES). The NAEP state 
program included private schools for the first time in 
1994. 
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The public school sample for each state consisted 
of about 100 schools, selected with probability 
proportional to grade 4 enrollment, using explicit and 
implicit stratification. The private school sample size 
varied across states, roughly in proportion to the 
proportion of grade 4 students enrolled in private 
schools. A few states with relatively low private 
school enrollment had a sample of just six schools. 
Some states had over twenty percent of students enrolled 
in private schools, and had sample sizes as high as 
thirty schools. 

The sampling frame used was the file of private 
schools obtained from Quality Education Data, Inc. In 
each state the population was stratified into Catholic 
diocesan schools and other (Catholic diocesan schools 
account for about sixty percent of grade 4 private school 
enrollment nationally). The second major stratification 
variable was Metropolitan Statistical Area (MSA) status 
(MSA/non-MSA). After sorting the schools by these 
two variables, this list of schools was then sorted, 
within each of the four cells so created, by a variable 
which gave the median household income (1989) of the 
ZIP Code area in which the school was located. A 
systematic sample of schools was drawn in each state, 
with school selection probabilities proportional to a 
monotone function of estimated grade four enrollment. 
For full details of the sample design see Chapter 3 of 
Carlson and Allen (1995). 

Within each selected school a systematic equal 
probability sample of thirty grade 4 students was 
selected. If the school had fewer than thirty students, all 
students were included in the sample. 

The original intention of the sample design for 
private schools was to ensure that, when the public and 
private school samples were combined, reliable 
estimates of mean student reading proficiency, overall 
and for various demographic subgroups, would be 
obtained for each state. Subsequent to the assessment 
NCES decided to publish mean reading proficiency and 
other statistics for private school students for all states 
where prescribed minimal school and student response 
rates were achieved. While all participating states 
obtained the required student response rates, in many 
cases the school response rate was not adequate, and no 
private school results are to be reported for such states. 

Sampling errors for private school estimates were 
prepared using the jackknife approach (see Wolter, 
1985). In using these jackknife variance estimators, the 
expectation was that the number of degrees of freedom 
available would be close to (although somewhat less 
than) the number of replicates created. Rust (1986, 
1984) discusses the likely degrees of freedom to be 
obtained from a range of variations of the jackknife 
procedure, including this approach. 

3.  An Artificial Study Population 
To study the behavior of this method of variance 

estimation, when used with systematic samples of 

populations such as those encountered in sampling 
private schools for state NAEP, we created a population 
with 105 observations as follows. We used the 
observed mean reading proficiency from 105 schools 
that participated in the 1994 NAEP state assessment. 
We then treated these 105 schools as if they were the 
entire population of a single fictitious state. The 
schools were sorted systematically using the 
characteristics used to stratify the private school 
samples in each state (Catholic/non-Catholic, 
MSA/non-MSA, median household income of ZIP 
Code). 

An examination of the distribution of school 
means, when sorted in sampling order, revealed that the 
systematic sort does little or nothing to explain the 
variation between school means. This is perhaps not 
especially surprising, since the school means are based 
on samples of thirty students. This illustrates that the 
school level variables used to sort the sample 
systematically do not explain a great deal of the 
combined school and student variance, which is not 
surprising. However, with student samples of size 
thirty in each school one might have expected to see a 
little more evidence of gains from the stratification of 
schools. 

4.  Sampling Variances and Variance 
Estimates 
Having obtained the population described in 

Section 3, we then proce~ed to evaluate the confidence 
interval coverage of standard error estimates obtained via 
the jackknife procedure, for all even numbered sample 
sizes from 2 to 30. In doing this, we evaluated the true 
sampling variance, the true distribution of the variance 
estimator, and the true confidence interval coverage for 
each sample size. The results given are exact, and are 
not from simulations. 

However, in doing this, we have ignored the 
within school variance, treating the estimate of the 
school mean for each of the 105 schools as a fixed 
quantity. This means that results are an evaluation for a 
single stage systematic sample drawn with probability 
proportional to size. As such, we speculate that the 
sampling distribution, variance estimator and confidence 
interval coverage are likely to be less well-behaved than 
for the actual two-stage sampling used for NAEP. In 
particular, the sampling distribution is likely to 
resemble less closely a normal distribution than is the 
case in practice. 

Although, as noted, the use of systematic 
sampling is likely to have given little reduction in 
sampling variance, the use of sampling with probability 
proportional to size is appropriate for this single stage 
sample. That is because the population mean that is 
being estimated is the student mean reading proficiency, 
rather than the mean of the school means. Thus 
schools contribute to this population mean in 
proportion to their enrollment size, so that selecting 
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schools with probability proportional to enrollment 
constitutes an efficient design. 

For each even numbered sample size from 2 to 
30, we evaluated the true sampling variance We then 
considered the performance of jackknife variance 
estimates, and confidence intervals generated using 
them, again considering the distribution of all possible 
samples. We considered two methods of jackknife 
variance estimation. With the first we replicated closely 
the procedure used for the private school samples for the 
1994 NAEP state assessment. We formed n replicates, 
where n is the total sample size. For samples of size 
10 and fewer we formed the replicates by deleting each 
sample school in turn, and calculating the replicate 
estimate of mean reading proficiency as the mean of the A 
remaining (n-l) schools. Letting x t denote the mean 
associated with the t th replicate, we obtained the 
variance estimator (for n<l 0) of 

v a r N A E P  ( f f )  --_ n -  1 ~ (~¢t - ~ ) 2 .  
n t=l  

This is the standard jackknife variance estimator, 
unbiased for linear estimators when using a simple 
random sample (with replacement) of PSUs. Under 
favorable conditions this variance estimator has (n-l) 
degrees of freedom. 

For samples of 12 or more schools, the 
replication scheme reflected the primary stratification 
into Catholic and non-Catholic schools. All such 
samples contained at least 2 schools of each kind. Let 
n 1 denote the number of Catholic schools, and n 2 the 
number of non-Catholic. The first n 1 replicates were 
formed by deleting each Catholic school from the 
sample in turn. In each case the remaining Catholic 
schools were reweighted by a factor of n 1/(n 1 -1) ,  

while the non-Catholic schools retained their full- 
sample weight. For the remaining n 2 replicates, each 
non-Catholic school was removed in turn, the 
remaining non-Catholic schools were reweighted by a 
factor of n 2/(n 2 -1) and the Catholic schools were 

given their full-sample weight. 
Under this replication scheme, the appropriate 

variance estimator, when m-12, is 

VarNAEP (j:) _ (n 1 -1) ~ (.~,_ j:)2 + (n 2 -1) nl ~n2 ('~t _ j:)2 
n 1 t..1 n 2 t..n I +1 

This is the standard jackknife variance estimator 
for a stratified (Catholic/non-Catholic) simple random 
sample with replacement. Under favorable conditions 
this variance estimator has (nl+n2-2) degrees of 

fre~om. 
The second form of jackknife variance estimator 

involved pairing the sampled schools, with adjacent 
schools in the systematic sort being paired. A replicate 

was formed by deleting one school from the sample, 
doubling the weight of its complementary pair member, 
and recalculating the mean score. The proc~ure was 
carried out n times, by dropping each school in turn. 

^ ,  
Letting x t denote the replicate estimate when school t 
is omitted, a variance estimator that is approximately 
unbiased for linear estimators is given by 

varpAIR ( x ) -  -~ .. 

This variance estimator should have less positive 
bias than varNAEP, since it captures most of the 
sampling variance reduction (if any) that results from 
the systematic sampling procedure, which varNAEP 
fails to do. On the other hand, varpAiR is less precise 

than varNAEP, having a likely maximum of n/2 
degrees of freedom, rather than the (n-1) or (n-2) degrees 
of freedom for varNAEP. 

In using these two variance estimators to 
estimate confidence intervals, we considered two 
methods for creating confidence intervals in each case. 
This was achieved by using two different choices in 
each case for the coefficient, applied to the estimated 
standard error in forming two-sided 95 percent 
confidence intervals. That is, we varied the value of t in 
the expression 

+-t4var(?c ) . 

One choice was to use the value, t= 1.96. This is 
often used in practice, but is most appropriate when 
var(J) is very precisely estimated (that is, has many 

degrees of freedom). The alternative was to use the 
97.5th percentile of a t distribution, using ( n - l )  
degrees of freedom for choice of the t distribution when 
using varNaEP for n ,: 10, using (n - 2) degrees of 
freedom for varNaEP for n ~ 12, and using n/2 degrees 

of freedom with varpAiR. 
The results of these different approaches are 

shown in the following tables. Table 1 shows the 
results when using varNAEP. Column 2 shows the 
true mean squared error (MSE) of the mean. 

The remaining columns in the table relate to the 
performance of the variance estimator, varNAEP. 
Column 3 shows its mean across all possible samples, 
and Column 4 shows its bias. Column 5 shows the 
sampling variance of varNAEP, and Column 6 its 
coefficient of variation (cv). Note that the degrees of 
freedom (dj5 of a variance estimator are related to this 
quantity via the expression 

df - 2/cv(var(3c)). 
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This shows that varNAEP has 0.90 degrees of 
freedom with a sample of size 2 (compared with an 
expected 1 degree of freedom), and 5.88 degrees of 
freedom with a sample of size 30 (compared with an 
expected 28 degrees of freedom). Thus all sample sizes 
give rise to very few degrees of freedom, with this 
population and sample design. 

Column 7 shows the mean square error (MSE) of 
varNAEP, combining the bias from Column 4 with 
the variance from Column 5. It can be seen that the 
variance predominates with smaller sample sizes, while 
the squared bias predominates for samples of size 28 and 
30. 

The statistics of prime interest for our analysis 
are given in Columns 8 and 9. Column 8 shows the 
true coverage probability, over all possible samples, of 
the 95 percent confidence interval, given by 

x __. 1.96 ~/varNAEP (S c). 

The figures in Column 8 show that the true level 
of confidence interval coverage is somewhat erratic. 
Even having used t=1.96 when the variance estimators 
have relatively few degrees of freedom, for samples of 
size 22, 24, 28, and 30 the confidence intervals always 
include the true mean. The coverage is 76 percent for 
samples of size 2. 

In using a t coefficient of 1.96 to form 95 
percent confidence intervals, it is implicitly assumed 
that the variance estimator in question has many degrees 
of freedom (say 30 or more). Since that assumption is 
clearly inappropriate, we repeated the process of creating 
confidence intervals, but using a t coefficient that 
reflected the number of replicates formed. That is, as 
described above, we used the 97.5th percentile point 
from a t distribution with m degrees of freedom, where 
m=(n- 1) for n< 10, and m=(n-2) for n> 12. This process 
of course creates wider confidence intervals than using 
1.96, especially for small sample sizes. 

The results are given in Column 9, which shows 
the effect of the alternative approach to forming 
confidence intervals. Substantial improvement in 
achieved coverage is seen for the smaller sample sizes. 
In fact, the major problem evident now is that the 
coverage rates are generally over 95 percent, and achieve 
100 percent for samples of size 6, 22, 24, 28, and 30. 
In these cases the substantial positive relative bias of 
the variance estimator is leading to this phenomenon. 

It is noticeable that poor coverage is achieved for 
samples of size 26 (86.6 percent). In fact, most of the 
confidence intervals that fail to include the mean only 
just fail to do so. Thus the exact coverage rate gives a 
somewhat overly pessimistic summary of confidence 
interval performance in this case. 

A striking feature of the results in the table is 
seen by examining the second column. This shows that 
the true level of sampling error does not decrease 

monotonely with increasing sample size. This lack of 
monotonicity is not just observed among the smaller 
sample sizes. Although n=30 gives rise to the smallest 
mean square error (2.6851), the second lowest is n=28, 
next is n=22, then n=20, n=24, and n=26. This 
behavior contrasts, of course, with simple random 
samples, drawn with or without replacement, where the 
sampling error decreases monotonely with increasing n. 
Column 6 shows also that the precision of the variance 
estimator is also not monotone with sample size. 

Given that the major drawback to the NAEP 
jackknife variance estimator with this population is the 
substantial positive bias demonstrated for some sample 
sizes, it is of interest to consider the performance of the 
paired jackknife variance estimator varpAiR. This 
estimator attempts to reduce the bias present in 
varNAEP from failing to reflect all of the gains from 
systematic sampling. This is expected to come at the 
expense of decreased precision of variance estimation. 
The results are shown in Table 2. 

Comparing Column 4 of Table 2 (showing the 
bias of the paired jackknife) with Column 4 of Table 1 
(showing the bias of the NAEP jackknife), we see 
evidence of reduced bias for larger sample sizes (20 to 
30), but not for smaller sample sizes. Looking at 
Column 6, we see that the coefficient of variation of the 
estimator is indeeA higher for varpAiR for small 

sample sizes (for n=2 the two estimators are the same). 
This difference disappears for larger sample sizes, and 
indeed for n=28 and n=30, the paired approach actually 
gives rise to more precise estimates of variance despite 
having, nominally, considerably fewer degrees of 
freedom. 
To see the impact of these differences in bias and 
precision on confidence interval coverage, we compare 
the second last column (Column 8) of Table 2 with that 
of Table 1. This comparison is for the case when 
t=-1.96 is used as a coefficient. This shows that the two 
approaches give very similar coverage for samples of 
size 14 and greater, while for smaller sample sizes on 
balance varNAEP is preferable to varpAiR. This 
suggests that the decision to use varNAEP with the 
NAEP private school samples, rather than using 
varpAiR, was a good one, albeit not importantly so. 

The NAEP sample sizes varied from 6 to 30 or so 
across states, with a mean of around 14. 

We turn now to a consideration of the use of a 
different coefficient for forming confidence intervals 
using the paired jackknife approach. For a coefficient 
we used the 97.5th percentile point from a t distribution 
with n/2 degrees of freedom. The result is shown in the 
last Column 8 of Table 2. Comparison with column in 
Table 2 shows that this approach improved coverage 
generally, bringing it closer to the desired 95 percent in 
most cases, and never causing a noticeable deterioration. 
In comparison with the last Column 8 in Table 1 we 
see that the paired jackknife gave closer to 95 percent 
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coverage for samples of size 4, 12, and 24, but 
performed significantly worse than the NAEP jackknife 
for sample sizes of 10. This constitutes the most 
serious of the few points of discrepancy, since both 
jackknife estimators gave rise to under coverage, more 
serious for the paired jackknife. 

5.  Summary 
The aim of this exercise was to examine the 

performance of the jackknife variance estimator, and 
large sample confidence intervals created using it, for 
small systematic samples from a population of a 
particular type. Our first finding was that in fact the 
true levels of sampling error for samples of this type are 
rather unpredictable. In particular, the relationship of 
sampling error to sample size is far from monotone, 
even for sample sizes between 20 and 30. 

Given this situation, it seems that the jackknife 
estimator used in NAEP performs quite well, especially 
when used with a t coefficient that reflects the limit on 
the degrees of freedom available, rather than using 1.96. 
The exception is with samples of size 2 where, even 
though the confidence interval coverage may approach 
the stated level, the extreme width of the confidence 
intervals, and the variability in confidence interval 
width, render these of very little use. 

Modifying the jackknife procedure, with the 
intention of decreasing the bias at the expense of greater 
variance, through the use of the paired jackknife 
procedure, generally had the intended result. The impact 
of this on confidence interval coverage was mixed, and 
not extensive. On balance we would argue that the 
NAEP jackknife procedure gives better results than the 
paired jackknife, but the difference is not great. We did 

also consider the effect of the addition of a finite 
population correction factor to the paired variance 
estimator, and found that it made little difference to the 
results. 

We are encouraged by these results that valid 
inferences can be made from samples in the range of 6 
to 30, using the jackknife procedure, with populations 
of schools and students within them, for estimating 
mean student proficiency. While confidence interval 
coverage sometimes strayed from the stated levels, it 
was generally in a conservative direction. The stability 
of the confidence intervals formed seems acceptable for 
all but the smallest sample sizes of 2 (and possibly 4). 
We recommend the use of the jackknife procedure for a 
design such as this. However, we caution that such 
designs do give rise to very few degrees of freedom for 
variance estimation, and the true level of sampling error 
for a given sample size probably cannot be predicted in 
advance with much certainty. 
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Table 1. Performance of jackknife variance estimator using NAEP replication scheme (varNAEP) 

*Coverage **Coverage 
MSE of Bias of True variance cv of MSE of rate of 95% rate of 95% 

Sample estimated Expected estimated of estimated estimated estimated confidence confidence 
size mean variance variance variance variance variance interval interval 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

2 152.32 138.03 - 13.96 93,736.92 2.22 93,931.74 
4 52.07 71.05 18.98 6,171.13 1.11 6,531.47 
6 26.82 46.42 19.61 1,912.25 0.94 2,296.77 
8 30.97 32.26 1.29 500.53 0.69 502.20 

10 27.25 24.96 -2.27 292.23 0.68 297.37 
12 14.11 23.02 8.91 311.92 0.77 391.27 
14 15.87 18.76 2.90 173.95 0.70 182.34 
16 18.39 16.36 -2.03 57.86 0.46 61.98 
18 10.95 13.27 2.33 44.39 0.50 49.82 
20 7.19 12.92 5.74 31.16 0.43 64.07 
22 4.46 10.40 5.94 23.53 0.47 58.77 
24 8.34 10.95 2.61 40.55 0.58 47.39 
26 9.28 9.77 0.49 13.96 0.38 14.19 
28 3.25 9.12 5.86 12.26 0.38 46.63 
30 2.69 8.56 5.87 8.47 0.34 42.97 

* based on t coefficient of 1.96 
** based on t coefficient from appropriate t distribution 

0.7552 
0.9122 
0.9971 
0.9501 
0.9053 
0.9492 
0.9802 
0.9099 
0.9570 
0.9656 
1.0000 
1.0000 
0.8657 
1.0000 
1.0000 

0.9484 
0.9813 
1.0000 
0.9538 
0.9168 
0.9813 
0.9905 
0.9099 
0.9739 
0.9656 
1.0000 
1.0000 
0.8657 
1.0000 
1.0000 

Table 2. Performance of jackknife variance estimator using paired replication scheme (vareAIR) 

*Coverage **Coverage 
MSE of Bias of True variance cv of MSE of rate of 95% rate of 95% 

Sample estimated Expected estimated of estimated estimated estimated confidence confidence 
size mean variance variance variance variance variance interval interval 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

2 152.32 138.03 -13.96 93,736.92 2.22 93,931.74 
4 52.07 74.02 21.95 12,928.24 1.54 13~10.12 
6 26.82 47.18 20.37 2,969.01 1.15 3,383.89 
8 30.97 30.94 -0.03 633.66 0.81 633.66 

10 27.25 21.84 -5.38 424.14 0.94 453.11 
12 14.11 19.41 5.30 383.95 1.01 412.01 
14 15.87 18.47 2.60 169.33 0.70 176.11 
16 18.39 15.65 -2.74 93.16 0.62 100.68 
18 10.95 11.55 0.61 50.32 0.61 50.69 
20 7.19 12.70 5.52 38.07 0.49 68.53 
22 4.46 11.16 6.70 30.76 0.50 75.61 
24 8.34 10.28 1.94 54.03 0.71 57.81 
26 9.28 9.11 -0.17 13.65 0.41 13.68 
28 3.25 7.19 3.93 5.98 0.34 21.46 
30 2.69 7.62 4.94 3.97 0.26 28.36 

* based on t coefficient of 1.96 
** based on t coefficient from appropriate t distribution 

0.7552 
0.8439 
0.9532 
0.8809 
0.7131 
0.9128 
0.9811 
0.9099 
0.9570 
0.9527 
1.0000 
0.9615 
0.8617 
0.9914 
1.0000 

0.9484 
0.9656 
0.9991 
0.9363 
0.8608 
0.9492 
0.9894 
0.9099 
0.9739 
0.9656 
1.0000 
0.9615 
0.8657 
1.0000 
1.0000 
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