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2. Do other approaches provide viable alternatives, at 
least in the context of linear multi-level 
regression7 

Abstract 
In this paper we describe three alternative approaches to 
the estimation in large scale complex sampling 
situations involving latent variables, as typified by 
NAEP: Direct estimation, plausible values, and errors- 
in-variables regression. The advantages and 
disadvantages of each are discussed, emphasizing that 
different problems may require different approaches. We 
illustrate these approaches with an example, and discuss 
the implications for the future design of NAEP 
materials. 
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Introduction 
The plausible values technique developed as 

part of the National Assessment of Educational Progress 
(NAEP) progrmn represent an important breakthrough 
in testing technology. It allows testing programs such 
as the NAEP and the forthcoming Third International 
Mathematics and Science Study to cover a much broader 
range of content that would otherwise be possible. 
Further, plausible values are very flexible, in the sense 
that they can be used by a secondary data analyst to 
"correctly" estimate the parameters of any statistical 
model that is consistent with the population model that 
is used in the generation of the plausible values. That 
model is a standard multivariate linear regression model 
that uses latent ability as the outcome variable and a 
large away of independent variables. 

While plausible values are straightforward to 
use in secondary analysis, a number of substantive 
researchers are arguing that there use is excessively 
tedious. The program of research that we are 
undertaking is primarily concexned with two issues: 

1.Is the population model used in the generation of 
plausible values appropriate when the plausible 
values are used in multi-level regression 
models, and 

In this paper we examine three alternative approaches 
that have been proposed for analyzing complex sample 
data from multilevel contexts that include substantial 
measurement error components in a dependent 
variable--in this case student "abilities" that are derived 
from a set of item responses. 

The Item Resoonse Model 
_ 

For the item response model we will restrict 
our attention to the random coefficients multinomial 
logit (RCML) recently described by Adams and Wilson 
(in press). We use the RCML because it is a very 
general from of the Rasch model. In addition to this 
generality, the RCML inherits the fundamental 
measurement properties of the Rasch family. The 
general principles of our approach could, however, be 
applied with any item response model. As the item 
response model is not the focus of this paper, we will 
not describe the RCML in detail here, but direct the 
~ e r  to Adams and Wilson (in press) instead. 
We write the response vector probability model as 

P r (X  = xl0)  = fx(x ;~10) ,  (1) 
where 0 is person ability, ~ is a vector of item 
parameters, X is a vector random variable, and x is a 
realization of that random variable. 

The Population Model 
For the population model we will be 

specifying a two level linear model with normal 
distribution assumptions. In describing these models 
we will use the language of students nested within 
schools, as this is the focus of the NAEP context, 
although like all multi-level models they can be applied 
more generally. If we consider the case of S schools 
indexed s = 1, . . . ,S with Ns students sampled from 
school s and Ons as the latent ability of person n in 
school s then a within school model is: 

o,, = 

where Y '  is a vector of u fixed predictors for person n 

in school s,/~s is a vector of u regression coefficients 
for school s and Ens is a random error independent of 

Y 2  with 
/id 

E~,~N(O,o '2)  . (3) 
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At the between school level we model variation in the 
school level regression coefficients with 

t ,  = W , 7 ' + U , ,  (4) 
where 7, is a vector of uv regression coefficients. 
W ,  = o), ® I ,  with CO, a vector of v school level 

regression coefficients and I= is an identity matrix of 
dimension u.; and Us is a random error term 
independent of Ws with 

//d 

U,-MVW(0,Z). (5) 
In the present context it might be useful to think of the 
between schools variables W s as being school 
characteristics such as "school size" or "average student 
SES". 
It follows from (2) and (3) that 

= 

[ • ,] l (o=---V~,Ss)(O=---V~fls (6) exp -20.2 

and from (4) and (5) that 

:# (p, ;w,  , z, r) = Izl-ta(2 ) × 

-1 " w,r)] 09 i (/J" - w , r )  - 

which for convenience we will write as f/1 ( f t , ) "  

Estimating the model 
Plausible Values. 

First we can use the NAEP plausible value 
methods developed at ETS by Mislevy and his 
colleagues (Mislevy, 1991; Mislevy, Beaton, Kaplan, 
and Sheehan, 1992). The plausible values approach is a 
multi-step approach. First a measurement model must 
be fit to the student item responses to produce item 
parameter estimates. A regression model with many 
independent variables is then combined with the 
measurement model to provide a posterior ability 
distribution for each studend (Johnson, Mazzeo and 
Kline, 1993). To ease the computation burden NAEP 
uses a two step approach where the parameters are first 
estimated without the use of conditioning variables and, 
in a second phase, the item ~ e t e r s  are fixed at their 
estimated values while the population parameters are 
estimated as an intermediate step in the generation of 
plausible values (Thomas, 1992). Multiple sets of 
random draws are then taken from the posteriors to 
produce the so called "plausible values" (5 is the 
standard number used by NAEP). Multiple runs of 
standard (including multi-level) regression software are 
then used to analysis the data using each of the sets of 

1 In this context the independent variables are often 
called conditioning variables. 

plausible values. The results of these multiple runs are 
then combined (see Zwick, 1992) to produce both an 
estimate and a standard error that reflects measureanent 
e r ro r .  

Thomas (1992) has reported on the accuracy of 
asymptotic corrections in evaluating the posterior, and 
has reported excellent results in standard (i.e., not 
multilevel) analyses. However, when we consider 
multilevel situations like the one deseribeA above, we 
have been eoncemeA with another aspect of the plausible 
value generation--the disaggregation of school-level 
variables in the conditioning procedure. While it is 
plausible to expect that this will have no undue effects 
on a standard analysis, it would be reasonable to expect 
that there might be some consequences in a multilevel 
analysis. For example, at a recent professional meeting 
several researchers reported finding odd results when 
applying multilevel models to NAEP plausible values 
(Atash, Burgdorf, Chancy, and Williams (1995); 
Kaufman, Wilson & Adams, 1995; Lee, Croninger, and 
Smith (1995)). 

Errors in Variables Regression 
A second possible method for using latent 

outcome variables that have large error components in a 
hierarchical context is to develop a multi-level errors in 
variables regression model. This method is an 
extension of the so-called "v-known" approach 
developed by Raudenbush and Bryk (1985) and 
implemented in their computer program HLM (Bryk, 
Raudenbush, Selzter and Congdon, 1988). The method 
proceeds by adding an additional level to the bottom of 
the usual multi-level hierarchy. This level can be 
regarded as a measurement level (or model) since it 
represents how the latent ability estimate (or prediction) 
is related to its true value. 
Suppose again that One is the t rue  latent ability of 

person n in school s and that we have access to tp,, a 

prediction of that ability where ~p,, is independently 
drawn from a normal "population" of possible values 

with mean 0,~ and known variance Z'2,~. That is 
id ÷.) or 

'_ } ex - 21:2 (q~ns - Ons)2 (8) 

We call (8) the within student, or measurement model. 
In specifying the between student within school and 
between school models we again use the normal 
hierarchy as above. Our efforts to apply the errors-in- 
variables idea to the problem of multilevel models have 
been documented in a series of papers. First, for a two- 
level model in Adams, Wilson and Wu (1992), then for 
a three-level model in Wilson and A d a m s  (1994) and 
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Adams and Wilson (1994). These studies revealed that 
the EAP estimator we have been using was not 
appropriate for the errors-in-variable approach, so we 
have concentrated our efforts recently on finding an 
unbiased estimator of the person ability. We have 
found that the so-called "Warm" estimator (Warm, 
1989) solves at least some problems for dichotomous 
items (Roberts & Adams, 1995a; Adams, Roberts & 
Wilson, 1995), and have generalized it for polytomous 
items (Roberts & Adams, 1995b). 

Estimating the Model in a Single Step 
The third approach that we consider is the 

direct solution of the multi-level item response model 
(Adams, Wilson and Wu, 1993). Multi-level item 
response models combine the regression model of 
interest with the measurement model to produce a non- 
linear multi-level model that allows the direct 
estimation of population characteristics (e.g. variance 
components and regression coefficients) from item 
responses. This procedure should be seen as contrasting 
with the more typical usage of multi-level models in 
psycho-social applications, where the basic data 
analyzed consists of either raw or scaled scores. The use 
of such models for single level regression has was 
propose~ by Mislevy (1984) and explored by Adams, 
Wilson and Wu (1993); in this paper we illustrate the 
extension the approach to multi-level regression. 
Because this approach produces estimates of all of the 
parameters of interest in a single analysis we call it a 
one-step procedure. 

To estimate the model we are currently using a 
full maximum likelihood (or MLF) method. MLF is 
the standard approach to estimating item response 
models although restrictexl maximum likelihood (MLR) 
is generally preferred for the estimation of multi-level 
models. See Dempster, Rubin and Tsutakawa (1981) 
for discussion of the differences between MLF and 
MLR. 

If we let {x}, be the collection of all item 

response data for the students in school s and let {x} 
be the collection of item responses for all sampled 
students then it follows from (1), (6) and (7) that the 

likelihood of ~, 7', 0"2 arid ~ given {x} is 
$ 

= 

$-='1 
$ 

= n :, (ix), l#,):# (#,)a#, 
a=ID a 

$ 
= n I (9) 
,=1fla n=l On, 

where 

#,)- r, :,r.l #,) 

= H I fx (xn, I 0n, )fo(On, lfls)eo~ . (10) 
n-lens 

The log likelihood is then 

x - 

' r ] = ~ log I fx({x},l/~,)f#(/~l,)a/~, • (11) 
• -I  k#, 

The computation necessary for maximizing this 
likelihood is extensive so we will illustrate the method 
using models that involve a limited number of school 
and student level variables. 

A Demonstration 
Consider a multilevel example of the 

following form: 

Ons = ]30s + ]31sYlns + gns 02) 
where, 0ns refers to the ability of student n in school s, 
and, in order to make the example concrete, we consider 
]:1 to be the student's gender (say, 0=male, l=female). 
e is assumed distributed as N(0,a2). Suppose, 
furthermore, that these individual predictors are 
influenced by school-level variables of the following 
form: 

)0o, = ?'oo + ?'olWl, + Wo, (13) 

ill, = r10 + rllWl, + u1, 
where, in order to make the example concrete, we might 
label W1 as "Teacher Qualifications",. Assume that 
the school-level error variables are distributed thus: 

]3 ,14> 2, 
The simulated samvle. 

_ 

We chose values for the variables for the 
structural parameters--T00, TO 1,710, ~11, ¢00, ¢11, 
and cr 2-- in order to generate, through (12), (13) and 
(14), reasonable values of 0ns according to our 
experience. These values are shown in the top row of 
Table I. We generated 0ns values for each of 30 
students in 100 schools, with gender split evenly in 
each school, and with W1s (Teacher qualifications) 
distributed normally with mean 0 and variance I. In the 
second row of Table I are the estimates obtained by 
applying the HLM program (Raudenbush et al, 1988) to 
the generated values. These are provided to give some 
idea of the actual sample that was obtained, and should 
be the bais of comparison of the estimates. To generate 
the results in the remainder of the table, we used the 
generated O values to in turn generate responses to four 
series of items according to the RCML model referred to 
above. The items are assumed to be dichotomous with 
item difficulties approximately uniformly distributed 
from -3.0 to 3.0. The number of items varied from 5 to 
40. Typically, we would expect to see some 
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improvement of variaance estimation results as the 
number of items increases. 

For the plausible values, the RCML model 
was used with school variates disaggregated to the 
student level following the procedure used by NAEP. 
To make his more exact, note that the total equation 
implied by (12) and (13) is: 
O= = r00 + r01Wl, + (rl0 + rllWl,)rl= 

+UO, + YlssUI, + exs (15) 
The effect of disaggregating the conditioning variables is 
to alter this equation to the following: 
0,= = 7'00 + 7'olWls + (71o + 71]Wla)rlns + Vn, (16) 
Thus, one of the questions that we are interested in for 
this analysis is whether, when generating plausible 
values, the use of an equation of the form (16) rather 
than (15) might be a source of problems. 

Results. 
Platlsible Values. Examination of columns 2 

to 5 of the Plausible Values panel of Table 1 shows 
that the estimates of the school-level weights 
("gammas") straddle the generated value, even with only 
five items. However, this is not the case for the 
estimates of variance. Looking now at columns 6 and 
7, it is evident that all of the school level variance 
estimates are low, with improvement as the number of 
items increase, ranging from an approximate 80% 
underestimate for 5 items, to an approximate 15-40% 
underestimate for 40 items. The student level variance, 
in column 8, is consistently overestimated, with, once 
again, improvement for greater numbers of items. 

Errors in Variables. Examination of the 
gamma estimates show a similar story as for the 
plausible values. The school level variances are 
considerably better, with the worst case here, for 5 
items, being just about as good as the best case for the 
plausible values. Once again, they are underestimates, 
with the underestimation tending to decrease as the 
number of items increase. The underestimation ranges 
from about 15-30% for 5 items down to about 10-20% 
for 40 items. In contrast to the plausible values results, 
the results for the student level variance indicate that 
errors in variables approach results in an 
underestimation, with improvement as the number of 
items increase. The underestimation for 5 items is by 
about 80%, reducing to less than 10% for 40 items. 

Direct Estimation. Examination of the 
gamma estimates show a similar story as for the 
plausible values and errors in variables. The school 
level variances show a different pattern for the two 
eases, an underestimate in one case, and an overestimate 
in the other. Both tend to improve as the number of 
items increase. The student variance is somewhat 
overestimated, without a clear trend by number of 
items; it is overall the best result of the three. 

Discussion 
Probably the most important results are those 

for plausible values: they are altogether quite disturbing, 
as this is our current "state-of-the-art". The 
underestimation of school level variance indicates that if 
we were to try and use these plausible values for 
secondary multilevel analysis, we would most likely 
find far fewer school level effects than is actually the 
case. This would be a possible explanation of the 
troublesome results mentioned earliex for HLM analyses 
of NAEP data during a symposium on "Multilevel 
modeling with NAEP data".. One way to look at the 
situation is to consider the variance-covariance matrix 
for the multilevel model given by (12) and (13). This 
is a block diagonal matrix, with the size of the blocks 
given by the number of students per school. Equation 
(16) would be the appropriate one if the variance- 
covariance matrix were diagonaL The conditioning used 
by NAEP maximizes the number of conditioning 
variables, in the hope of reducing equations (13) to 
"fixed" equations (i.e., reducing the variance of Uis to 
virtually zero). This will tend to make the values in the 
diagonal blocks constant, but it will not make the 
variance-covariance matrix itself diagonal. Using fewer 
students per school will tend to make the block diagonal 
matrix more like a diagonal matrix, but will only do so 
exactly when there is just one student per school for 
that outcome variable. Indeed, because of the matrix 
sampling design used by NAEP, there are relatively few 
students per outcome variable, but never just one except 
by accident. 

One alternative strategy here would be to 
include the schools themselves as dummy variables in 
the multilevel model. We have tried this out with a 
similar, but slightly more complex, model (Adams, 
1995). The results indicate that conditioning on the 
school dummy variables works well on the 
understimation of the intercept variance (o00), and on 

the student level variance (¢r2), but not very well on the 
other school level variance (in this case cr 11). This can 
be greatly improved by conditioning also on all the 
interactions between schools nad the school-level 
variables. However, although this is an interesting 
theoretical result, it is one that would be rather difficult 
to implement in a NAEP-Iike situation with many 
hundreds of schools. Note that these results are for a 
situation somewhat different to that for NAEP--the 
measurement model is different, we have drastically 
simplified the between school model, and our prcr.exlures 
are somewhat simpler than that for NAEP because of 
the simpler situation. However, we see no reason why 
the results should not extend to that more complicated 
situation. Another approach would be to cleave more 
closely to the original idea as expressed by Mislevy 
(1991), where he suggests that one should, instead of 
disaggregating of the school level variables, construct 
the correct multi-level model for the joint posteriors and 
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draw the plausible values from those. We plan to carry 
out studies of the feasibility of this in the near future. 

The results for the errors in variables approach 
are somewhat better than for the plausible values 
approach, at least for the school level variances. But 
they are still underestimated. And the results for the 
student level variance is quite poor for fewer items. We 
associate these difficulties with the problem of getting 
unbiased estimates of the student abilities when there 
are few items. The Warm estimator has helped with 
this, but further work is needed. 

The results fix the direct estimation method are 
rather disappointing. We would expect these to be the 
best available, but they are not. Clearly, further work 
is neexled on improving our methods and computational 
techniques for this approach. 

From these demonstrations, we can garner 
some points regarding the design and analysis of NAF.~ 
and other NAEP-Iike sample surveys. First, things 
certainly get better with increasing numbers of items, 
no matter how you analyse them. Thus, any technique 
that accomplishes that is worth trying out. Although 
we have only used dichotomous items in this 
simulation, we can note that polytomous items 
typically provide more information than dichotomous 
items (see, for example, Wilson and Wang (in press), 
where polytomous items provided between 3 and 4 
times as much information as dichotomous items). 
Thus, replacement of dichotomous items with 
polytomous ones, where other costs are held constant, 
would be a good strategy. Unfortunately, the typical 
use of polytomous items in education has been with 
performance assessments which are considerably more 
expensive than are the multiple choice dichotomous 
item. Perhaps we need to provide more impetus for the 
development of machine-scorable polytomous items. A 
second stategy to increase the effective number of items 
is to take advantage of the correlations between the 
subscales which are typically used in such surveys. A 
multidimensional measurement model will allow 
student information on items on other subscales to 
contribute to the results for the subscale of interest, 
thereby increasing the effective number of items on any 
given subscale (this is the current strategy of choice for 
the Third International Mathematics and Science Study-- 
Adams (1995)). Second, use of schools as conditioning 
variables can help--any strategy that fulfilled the 
purposes of the survey and reduced the number of 
schools so that it became feasible to do so, would be 
useful. Clearly this would need some consideration of 
the pros and cons, as reducing the number of schools 
and increasing the number of students per school will 
have a serious effect on the efficiency of the survey. 
However, for those surveys that have the functions of 
the school as focus (which are the ones where 
multilevel modeling is most important anyway), we 
will need to ensure that there is enough information 
collected inside each school to justify the rich and 

sophisticated analyses possible with multi-level 
modeling. 
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# Items TOO T01 
Generating Value 

0 0.3 
Generated Value 

0.0391 0.3081 
Plausible Values 

5 0.0455 0.3277 
10 0.0509 0.3213 
20 0.0513 0.2893 
40 0.0331 0.2851 

Earors-in-Variables 
5 0.0316 0.2710 
10 0.0403 0.2709 
20 0.0473 0.2643 
40 0.0286 0.2724 

Direct Estimation 
5 0.0347 0.3231 

10 0.0486 0.3187 
20 0.0502 0.2895 
40 0.0274 0.2907 

Table 1 
Results of the Demonstration 

'Y10 T1 1 600 611 6 2 

0.3 0.1 0.2 0.2 0.8 

0.2217 0.0573 0.1882 0.2512 0.7907 

0.2541 0.0348 0.0335 0.0289 0.9639 
0.2292 0.0356 0.0675 0.0441 0.9353 
0.2195 0.0669 0.0994 0.0900 0.8977 
0.2362 0.0706 0.1322 0.1477 0.8382 

0.2034 0.0263 0.1397 0.1722 0.1644 
0.1918 0.0402 0.1439 0.1227 0.4126 
0.2065 0.0723 0.1563 0.1739 0.6530 
0.2315 0.0736 0.1658 0.2042 0.7166 

0.2660 0.0500 0.0001 0.6944 0.8953 
0.2302 0.0411 0.1098 0.4494 0.7936 
0.2220 0.0695 0.1013 0.4110 0.8068 
0.2436 0.0658 0.1111 0.4050 0.8139 
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