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Major purposes of the Trial State Assessments 
(TSA) in mathematics are to compare states in terms of 
their mean mathematics proficiency, to assess how well 
sub-groups of students such as females, ethnic minorities, 
and socially disadvantaged students are faring in the 
several states (Mullis, Dossey, Owens, and Phillips, 
1993), and to assess relationships between policy-relevant 
predictors and math proficiency. It is then possible to 
compare states over time using repeated cross sections of 
the TSA. 

Of course, strong causal inferences will not be 
justified based on cross-sectional data, or even on the 
basis of repeated cross-sections, especially given the 
absence of a measure of prior attainment in the NAEP 
data. Rather, policy analyses of TSA data are designed to 
produce suggestive results; not to prescribe policy, but to 
stimulate new thinking about the sources of variation in 
mathematics proficiency at each level of the system, with 
special emphasis on the state level, about the predictors of 
variation at each level, about the opportunities and targets 
for intervention at each level, and about the plausible 
mechanisms for school improvement. 

In pursuing these purposes a number of 
methodological challenges emanating from the design of 
the TSA immediately confront the data analyst. These 
include the special structure of the outcome data which, 
by design, are incomplete for every student; the within- 
state design that includes both clustering and 
stratification; and the problem of incorporating 
heterogeneity between states. In this paper, we propose 
and illustrate a comprehensive and broadly applicable 
strategy for coping with these challenges. Our strategy has 
two stages: a within-state analysis and a between-state 
analysis. The within-state analysis uses a hierarchical 
linear model to handle the clustered character of the 
sample. This analysis is replicated for each plausible value 
and the results pooled as recommended in Little and 
Schenker (1994) and Mislevy (1992) using a specialized 
version of the HLM program (Bryk, Raudenbush, and 
Congdon, 1994) originally adapted for multiple plausible 
values by Arnold, Kaufman, and Sedlacek (1992). The 
output for each state is a vector of parameter estimates 
and their estimated sampling variance matrix. These then 
provide input data for the second stage of the analysis, a 
Bayesian synthesis of findings across states. Taken 
together, the two stages have the structure of a planned 
"meta-analysis" (Glass, 1976) in which each state's 

separate analysis constitutes a "study" and the between- 
state analysis combines these results. 

Data Analytic Challenges and Strategies 

Within each state, the sampling and measurement 
design unique to the TSA pose challenges that are not 
easily addressed with standard data analysis methods. 
Even when those are addressed, however, one must decide 
how to combine information across states. Below we 
outline a two-stage ("within-state" -"between-state") 
approach to the analysis of TSA. 
Within-State Analysis 

Let us consider first the data yielded within each 
participating state. The sampling plan was designed 
primarily to make inferences about student math 
proficiency. The students within each state were selected 
as the result of a two-stage cluster sample with 
stratification at the first stage. Specifically, schools were 
first stratified on the basis of urbanicity, minority 
concentration, size, and area income and then a) schools 
were selected at random within strata with a probability 
proportional to student grade level enrollment; and b) 
students were systematically selected from a list of 
students, given a random starting point, within schools. 
Overall, about 100 schools per participating state were 
selected with approximately 25 to 30 students selected 
from each school. An appropriate analytic method for 
these data, given the goals of the study and the design, is 
a two-level hierarchical linear model (e.g., Aitkin and 
Longford, 1980; de Leeuw and Kreft, 1986; Raudenbush 
and Bryk, 1986; Goldstein, 1987) in which students are 
"level-1" observations, schools are "level-2" observations, 
and each student's data are weighted inversely 
proportional to that student's selection given the 
stratification. The "HLM" program of Bryk, Raudenbush, 
and Congdon (1994) allows incorporation of design 
weights at level 1 reflecting the sampling design for 
inferences directed primarily at student characteristics. A 
comprehensive coverage of the sampling design and the 
construction of weights are presented by Johnson, 
Mazzeo, and Kline (1993). 

However, provision must also be made for the 
special character of the outcome variable used in NAEP 
as a result of the matrix sampling scheme in which each 
student was observed on only a subset of relevant items. 
Rather than yielding a single measured variable, NAEP 
produces five "plausible values" -- random draws from the 
posterior distribution of each student's "true" outcome 
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given the subset of items observed on that student 
(Johnson, Mazzeo, and Kline, 1993). To cope with this 
problem, Arnold et al. (1992) modified the HLM program 
to compute a separate analysis for each of the five 
plausible values and then to synthesize the results via an 
adaptation of Rubin's (1987) recommended approach to 
the analysis of multiply imputed data. This approach is 
described in detail in Little and Schenker (1994) and 
Mislevy (1992). This approach takes into account the 
extra uncertainty that arises because multiple plausible 
values rather than a single observed outcome were 
available. 
Between-State Analysis 

We expect that mean proficiency and "status 
gaps" in proficiency will vary from state to state. This 
heterogeneity across states is both of interest substantively 
and of concern methodologically. Substantively, state-to- 
state differences pose important questions for state and 
national policy-makers. Such questions may be addressed 
in one of two ways. First, it may be that once student 
background, school context, and policy-relevant 
predictors are controlled within states, little between-state 
variation will remain to be explained. Such a result would 
be informative and would motivate a study of how the key 
policy-relevant variables are distributed across states. 
Second, especially to the extent state-level heterogeneity 
persists even after controlling relevant covariates within 
states, it may be helpful to use state differences in income, 
funding, and policy as predictors of state differences in 
outcomes. This paper adopts the first strategy. 

Methodologically, such state-level heterogeneity 
plays a role similar to that of between-cluster variance in 
that analyses that ignore such heterogeneity will often 
produce biased results. In particular, standard errors for 
effects of predictors defined on states will be negatively 
biased. To address these issues, we employ a Bayesian 
framework in which, given the predictors in the model, the 
state effects are viewed as exchangeable and therefore 
random (DeFinetti, 1964; Lindley and Smith, 1971). The 
variance assigned to state-level heterogeneity represents 
our uncertainty about the source of that heterogeneity. 

Why Choose a Bayesian Synthesis Across States? 

The analyses we have proposed so far involve 
estimation of variation between students within schools, 
between schools within states and between states; and the 
formulation of prediction models to account for such 
variation at each level. Formally, this structure represents 
a three-level hierarchy. Hence, one might contemplate the 
use of a now-standard three-level hierarchical linear 
model with estimation via maximum likelihood as a basis 
for the analysis. Bryk and Raudenbush (1992, Chapter 8) 
review applications of this model. However, there are 
several compelling reasons to reject this choice, and new 

methods of analyses appear necessary for these data. 
First, although the data are very dense at level 1 

(the student level with about 2500 students per state) and 
level 2 (the school level with about 100 schools per state), 
the data are comparatively sparse at level 3 (the state level 
with 41 states and territories). Standard applications of 
hierarchical linear models condition estimates of all 
regression coefficients and their standard errors on point 
estimates of the variance-covariance parameters 
(Raudenbush, 1988). However, level-3 variance and 
covariance components are likely to be estimated with 
moderate or poor precision (depending on the research 
question). In this setting, conditioning on point estimates 
can lead to inferential errors, especially, in our case, 
regarding inferences about relationships between state- 
level predictors and outcomes. 

A more suitable analytic choice is a Bayesian 
analysis in which a non-informative prior distribution is 
specified for all state-level parameters. All inferences 
about regression coefficients at any level will then fully 
take into account the uncertainty about the unknown state- 
level variances and covariances. Moreover, inferences 
about these variances themselves will be important, since 
they signify the degree of state-to-state heterogeneity in 
the key outcomes of the study. Such inferences will be 
based on their posterior distributions. Such posterior 
distributions can be presented in a way that is readily 
accessible to non-technical audiences. Seltzer (1993) 
clearly explicates the advantages of this approach. In 
contrast, the maximum likelihood approach bases 
inferences about such variances on the large sample 
normal approximation to their sampling distribution. This 
approach will often be seriously inaccurate, especially 
when the number of level-3 units is small and the degree 
of heterogeneity at that level is modest. In these cases, the 
sampling distribution of the level-3 variance will tend to 
be highly skewed, contrary to normal theory (see Rubin, 
1981, for an analogous case and a lucid discussion of this 
problem). The Bayes model in our case will be estimated 
via Gibbs sampling (e.g., Gelfand and Smith, 1990; 
Tanner and Wong, 1987; Seltzer, 1993). 

A second compelling reason to avoid standard 
application of three-level hierarchical linear model is that 
those models typically require homogeneity of dispersion 
within level-3 units (or at least within subsets of level-3 
units) (Bryk and Raudenbush, 1992, Chapter 8). In many 
applications this assumption is sensible in light of 
inefficiencies that arise when separate variance structures 
are estimated for each level-2 or level-3 unit. However, in 
our case, it will be more realistic to allow every state to 
have a unique between-school variance-covariance matrix 
and a unique within-school variance. Loss of efficiency 
will not be an important consideration because of the 
substantial data existing within each state. Our separate, 
within-state analyses allow such heterogeneity of variance. 
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A third reason for a novel analytic approach is 
that classical applications of three-level models assume 
random sampling at each level. However, 41 states and 
territories volunteering to participate in the 1992 Trial 
State Assessment cannot be viewed as a simple random 
sample of states or territories. They are better viewed as 
strata. However, the classical approach to stratification -- 
to represent stratum effects as fixed effects -- contradicts 
our goal of modeling variation in state outcomes. Again, 
the Bayesian approach with a non-informative prior seems 
a sensible choice. In the Bayes view, unexplained state- 
level heterogeneity is modeled by variances and 
covariances that represent the investigator's uncertainty 
about the processes the produce it -- rather than 
representing sampling errors arising from a formal 
sampling process. 

Computations for Bayes estimation via Gibbs 
sampling are generally intensive. However, the main 
computational burden in our analysis will be the state-by- 
state analyses using a two-level hierarchical model with 
estimation via maximum likelihood. Once these 
computations are completed, the second-stage analysis -- 
that is, the between-state analysis using Bayesian 
estimation, will be computationally undemanding since it 
will be based on a sample size of 41. Thus, efficient 
computational methods -- via maximum likelihood -- will 
be used where the data are dense, that is, at levels 1 and 2. 
Computationally intensive methods will be used where 
they are most needed -- at level 3 where the data are 
comparatively sparse and the cost of using such methods 
is modest. 

Illustrative Examples 

Two analyses illustrate the logic of the approach 
we propose. The first simply estimates each state's mean 
math proficiency and standard error and then synthesizes 
these results in order to estimate the extent of state 
heterogeneity. The second analysis attempts to account for 
this heterogeneity by formulating and estimating two-level 
hierarchical models within each state. 
Example 1: Assessing Heterogeneity in Unadjusted State 
Means 

We first formulate within each state a two-level 
hierarchical model with no covariates. The output for each 
state is an estimated mean and its standard error, which 
provide input into a between-state synthesis. 

Level-1 model. The level-1 units are students; 
within each school, the student-level outcome depends 

Yqk = "~jk + eqk' euI, ~ N(O,a~), (1) 

only on the school mean according to the model where 
Yijk is the proficiency score for student i in school j and 

state k; njk is the school mean, and eij k is a random error 
assumed independently and normally distributed with 
variance Ok 2. 

Level-2 model. The level-2 units are the schools, 
and each school's mean is postulated to vary randomly 
around the state mean according to the model 

~jk = ~k + Ujk, Ujk ~ N (O,o)k2). ( 2 )  

Thus, [3k is the mean outcome for state k and Ujk is the 
random school effect assumed independently and 
normally distributed with variance COk 2. 

Yqk = ~k + Ujk + eqk' (3 )  

Combined model. Substituting Equation 2 in 
Equation 1 yields the single "combined equation" which 
is recognizable as a one-way analysis of variance model 
with random school and person effects. Estimates of the 
two variance components, Ok 2 and ~k 2, incorporates 
variation associated with the cluster sample so that the 
maximum likelihood (ML) estimate of [3k and its standard 
error will incorporate the extra variation arising from the 
clustered nature of the sample. 

Two modifications are needed to adapt 
estimation of each state's parameters given the structure 
of the TSA data. First, incorporation of student-level 
design weights assures that unequal probability of 
selection of sub-groups of students will not bias 
estimation of the state's mean proficiency. Second, the 
outcomes Yijk are, in fact, plausible values based on 
incomplete data rather than observed scores based on a 
full complement of item-level data. Thus, the ML 
estimation is replicated for each of five plausible values 
and the results pooled as specified in Little and Schenker 
(1994). 

Bayesian synthesis. The output from the within- 
state analysis are, the ML estimate of the state mean and 
its estimated variance. Note that the variance estimate 
incorporates uncertainty associated with multiple 
plausible values, stratification, and clustering. 

Exchangeable prior for 13. The state means are 
assumed a priori exchangeable, implying that we have no 
prior knowledge about the magnitude of the means of 
given states. We therefore assume 

~1~ - N(~,~). ( 4 ) 

Here y represents the prior location of the state means, a 
kind of "national mean," though it cannot be viewed as 
representative of the entire US population of eighth 
graders; and T represents the heterogeneity of the state 
means. The estimated variances Vk are assumed equal to 
their true values. Though this assumption cannot be true, 
its falsehood will have essentially no consequences on 
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inference given the large sample sizes within states. 
Non-informative priors for y, x. We have 

essentially no knowledge about the location of the state 
means or their heterogeneity. We therefore assume a 
priori that this pair of parameters are independent and 
non-informative on their parameter spaces. Technically, 

p(~) = c~, -~o < v < oo ( 5 )  

Here the C+ is an arbitrarily small constant. This flat prior 
assures that the posterior density of the parameter will be 
proportional to the likelihood, which is determined by the 
data. 

In general, the variance-covariance matrix, T, is 
assumed to have an inverse Wishart prior distribution 
given by 

where W, is the precision matrix of the inverse Wishart 
distribution and v is the degrees-of-freedom parameter. 
This prior distribution is assumed to be non-informative 
in its contribution to the posterior distribution as the 
degrees of freedom parameter, v, approaches 0, and 
approaches 0. 

Results. The analysis produces approximate 
marginal posterior distributions for [3k, k = 1 ..... 41 and for 
y and 1:. 

Figure 1 gives 98% posterior credibility intervals 
for approximateley half of the state means, [~k. Many of 
these do not overlap, implying significant between-state 
heterogeneity. This impression is confirmed by Figure 2 
(not shown) which gives the approximate marginal 
posterior for 1:. The figure shows unmistakable evidence 
of heterogeneity between states (note that zero is not a 
plausible value for 1:). However, there is considerable 
uncertainty about the magnitude of this heterogeneity. The 
outcome variable was on a scale with a mean near zero 
and a variance of approximately unity. The posterior mean 
of T is .079, implying that 7.9 % of the variance in the 
outcome lies between states. However, 1: values as small 
as .04 and as large as .12 are not improbable. Thus, it 
appears that from 4% to 12% of the variance in the 
outcome lies between states. 
Example 2: Accounting for Heterogeneity in State Means 

We now formulate within each state a two-level 
hierarchical model with covariates. The output for each 
state is a vector of regression coefficient estimates and 
their covariance matrix. Among these is the intercept, 
which will be the focus of the discussion here. 

Level-1 model. The level-1 model relates 
student-level predictors to student outcomes according 
to the model 

P 
Yok =njk + ~ %~Xpok + eok, eijk ~ N(O,o~), ( 7 )  

where Yijk is again the math proficiency score for student 
i in schoolj and state k; rrjk is the school mean adjusted for 
that school's means on the X variables, {Xpk is the 
regression coefficient associated with each Xpijk, which is 
the student's value on the pth student-level covariate. All 
covariates were centered around the Michigan means, so 
that if r~jk is positive, it means that school j in state k has 
a higher adjusted mean than does Michigan. 

The following Xs were used in the model" 
gender, ethnicity (indicators for Hispanic, non-Hispanic 
black, Asian, and Native American), national origin 
(indicator for born outside the US), family type 
(indicators for single parent and both parent with other 
type as the reference group), parental education 
(indicators for high school degree, high school plus, and 
bachelors degree), amount of time watching television, 
mobility, home literacy environment (indicators for 
receiving a newspaper, having more than 25 books, and 
subscribing to magazines), academic level (indicators for 
taking algebra and taking pre-algebra), and teacher 
preparation (teachers' years of experience teaching math, 
and indicators for having majored in math as an 
undergraduate, having majored in math education, and 
having an advanced degree). Thus, in all there were P = 
23 student-level covariates in the model within each state, 
not an inordinate number given state sample sizes 
averaging about 2,500 students. 

Level-2 model. The level-2 model relates school- 
level covariates to school intercepts according to the 
model 

a 
~jk = ~k + E ~qkWqjk + Ujk, Ujk ~ N (0,6~)2). ( 8 )  

q=l 

All W's were deviated around the Michigan mean so that 
~k is the adjusted mean for state k with positive values 
meaning that state's adjusted mean is higher than 
Michigan's. Note that (t)k 2 is the residual variance between 
schools within state k. 

The following Ws were specified in the model: 
school-median income, instructional dollars per pupil, 
percent minority, location (with indicators for rural and 
urban), an indicator for whether the school offers algebra, 
and a scale indicating the disciplinary climate of the 
school. 

Combined model. Substituting Equation 2 in 
Equation 1 yields the single "combined equation" 

Q p 

Yijk = ~k + O-IE 8qkWqjk + p~l= {~p/pijk + Ujk + e ijk' ( 9 ) 
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which is recognizable as a random intercepts regression 
with random school and person effects. Estimates of the 
two variance components Ok 2 and fS.)k 2' incorporate 
variation associated with the cluster sample so that the 
maximum likelihood (ML) estimate of 13k and its standard 
error will incorporate the extra variation arising from the 
clustered nature of the sample. 

Bayesian synthesis. The synthesis followed the 
same form as in the case of the unconditional model 
except that the input was the adjusted state mean and its 
variance rather than the unconditional mean. 

Results. The analysis produced approximate 
marginal posterior distributions for 13k, k - 1 ..... 41 and for 
7 and 1:. Figure 3 gives 98% posterior credibility intervals 
for the state adjusted means, 13k. The vast majority of these 
now overlap, in contrast to the unconditional case where 
many did not overlap, implying far less heterogeneity 
between states than in the unconditional case. This 
impression is confirmed by Figure 4 (not shown) which 
gives the approximate marginal posterior for the 
conditional 1:. Although the figure shows evidence of 
heterogeneity between states (note that zero is not a 
plausible value for a:), there is every reason to believe that 
the magnitude of this heterogeneity is small. The posterior 
mean of 1: is .012, implying that 1.2 % of the variance in 
the outcome lies between the adjusted means of the states. 
Moreover, the unknown value of T is unlikely to exceed 
.03 or 3% of the total variance in the outcome. Thus, it 
appears that from .004% to 3% of the variance in the 
outcome lies between state adjusted means. 

Comment. Considerable controversy has 
surrounded the question of whether and how to compare 
states in terms of mean proficiency. Some have argued 
that unadjusted means simply reward those states with the 
most advantaged compositions and give impoverished 
states and those with large number of immigrant and 
ethnic minority students no chance to "shine." However, 
the National Governing Board of NAEP has taken a 
strong stand against adjusted means, arguing that 
educators should not set up low expectations for more 
disadvantaged states. 

A technical argument against standard 
approaches to adjustment is that if one controls for student 
demographic background without specifying explanatory 
variables representing policy and practice, the adjustments 
for background will be biased. That is, given the typical 
positive correlation between student social advantage and 
exemplary school practice, a model that omits school 
practice will over-estimate the effect of social advantage, 
thus leading to biased estimates of adjusted means. 

The analysis reported above offers an alternative, 
namely, to formulate models that include social 
composition and school policy and practice. Such a model 
accounts for nearly all of the variation between states, as 
a comparison of Figures 2 and 4 shows. The key issue is 

then to compare states, not on their adjusted means, but, 
rather, on the values taken on by key policy-relevant 
predictors. For example, our results indicated consistent 
and positive effects of teacher preparation and a positive 
disciplinary climate. It would therefore make sense for 
states to examine their performance on these variables and 
to use such information to assess policy options for 
improving schooling. (Complete set of tables and figures 
available upon request.) 
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