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Half-Sample Replication, results are presented showing the bootstrap variance 
estimator' s superiority for the designs tested. 

Introduction 
The National Center for Education Statistics' (NCES) 

Schools and Staffing Survey (SASS) conducted by the 
Census Bureau has a complex sample design. Public 
schools are selected using a stratified systematic PPS 
(unequal selection probabilities) sample design. From 
this design, data are collected at the school and school 
district level. The school district is an aggregation unit 
(i.e., the district selection probability is computed by 
aggregating school selection probabilities containing 
the district across the school strata). The probability is 
nonlinear with respect to the school sample sizes. A 
bootstrap variance estimator (Kaufman,93) has been 
developed that provides better variance estimates than 
the balanced half-sample replication (BHR) variance 
estimator for the SASS public school district 
component. A bootstrap variance estimator for the 
other SASS components was presented in 1994 
(Kaufman,94). The bootstrap variance estimators 
reflects the finite population correction associated with 
the SASS high sampling rates, without using the joint 
inclusion probabilities. A set of bootstrap replicate 
weights are generated that work like B HR replicate 
weights, so that the bootstrap variances can be 
generated from any BHR variance software 
package. It has also been shown that the bootstrap 
variance estimator performs better than BHR with 
other designs with high sampling rates (Kaufman, 94). 
This bootstrap variance estimator has been 
implemented into the 1994 SASS survey. 

The goal of this paper is to provide results from 
simulation studies that demonstrate the bootstrap 
variance estimator (Kaufman, 94) works better than 
BHR with designs with low sampling rates. In 
addition, a balanced bootstrap will be presented that 
works better than the non-balanced bootstrap variance 
estimator. 

First, a motivation why the bootstrap variances 
estimator may perform better than BHR is presented. 
Next, the balanced and non-balanced bootstrap 
variance estimators are described, as well as, the BHR 
estimators. The methodology presented here is the 
same as what is presented in (Kaufman, 94), except for 
the balancing of the bootstraps. A description of the 
designs being tested in this study follows. Finally, the 

Motivation 
BHR assumes 2 PSUs are selected with replacement 

within each stratum. To fit PPS systematic sampling of 
n PSUs into this model, sampled PSUs are paired by 
the order in which they were selected. Each pair is then 
treated as a stratum for variance estimation (variance 
stratum). If a systematic equal probability sample of 
size 10 is selected from a frame of 100 PSUs, the BHR 
model would have more than 10 trillion possible 
samples. In reality, there are only 10 possible 
systematic samples. Without, further homogeneity 
assumption, BHR can be a very large overestimate, 
even if the sampling rates are low. For this example, 
since the bootstrap selection is done systematically, 
approximately 10 possible bootstrap-samples can be 
selected from the bootstrap frame with each 
randomization of the bootstrap frame. Unlike the BHR 
estimator, a homogeneity assumption does not appear 
to be required; so the bootstrap estimator may get 
closer to the true variance. 

Public and Private School.Bootstrap Frame 
The idea behind the bootstrap samples is to use the 

sample weights (Wi) from the selected units to estimate 
the distribution of the school frame. From the 
estimated bootstrap-school frame, B bootstrap samples 
can be selected. The bootstrap-school frame is generat- 
ed in the following manner: 

For each selected school i, Wt bootstrap-schools (bi) 
are generated. If Wi has a noninteger component then a 
full school is generated with a reduced selection 
probability and weight. As shown in the bootstrap 
weighting section, the bootstrap expectation of the 
bootstrap weights (Wbi) equals the full-sample weight 
(Wi). The bi th bootstrap-school has the following 
measure of size (mbi): 

mbi = Ibi * lffvVi, 

- t  . . . . .  

I 1 if bi is an integer component of W t 
Ibl =I Ct if bi is a noninteger component of W i, 

I Ct being the noninteger component 
+ . . . .  

Bootstrap Sample Size 
The bootstrap sample size is usually chosen to 

provide unbiased variance estimates. When the 
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original sample is a simple random sample of size n 
then Efron (1982) shows a bootstrap sample size 
should be n-1. Sitter (1990) has computed the boot- 
strap sample size for the Rao-Hartley-Cochran method 
for PPS sampling. A variation of this result is used in 
this simulation. Sitter's bootstrap sample size (n °) is the 
sample size which makes the following quantity 
closest to 1: 

n* n n 
(Z (N,'2-N'))/(Z(N,2-N))*(N2-Z N,~)/(N "*(N'- 1 )) 

g=l g=l g=l 

n °" is the bootstrap stratum sample size 
g: represents a sampling interval in the stratum 
Ns': is the number of bootstrap-schools in the g'~ 

sampling interval, where the bootstrap-schools are 
in a random order 

n: is the sample size in the stratum 
N': is the number of bootstrap-schools in the stratum 
N • is the number of schools in the stratum 
N~: is the number of schools in the g'~ sampling 

interval, where the schools are in their original 
order; either a random order for the Rao-Hartley 
-Cochran method or the specific nonrandom order 
for the SASS method 

n" can not be calculated directly. The quantity above 
is computed for each n" from n-20 to n. The n" that is 
closest to one is used in the bootstrap selection. 

The variation to Sitter's formulation is in the 
computation of Ng" and N s. Two modifications are 
made. The first occurs when Ib~ is not equal to 1. 
Instead, of using 1, as Sitter does when counting units; 
Ibi is used to calculate Ng °. The second modification is 
due to the fact that a school or bootstrap-school can be 
in two sampling intervals. When this happens, N s and 
N s" are not increased by one. Instead, they are in- 
creased by the proportion of the unit that actually goes 
into the sampling interval. If Ibi does not equal 1, and 
the bootstrap-school is in two sampling intervals then 
N~" is increased by the product of the two 
modifications described above. 

Determining the Bootstrap Sort Order 
If the bootstrap variance estimate is to work correct- 

ly, it is important that the school-bootstrap frame be 
randomized in an appropriate manner. In one extreme, 
when the bootstrap frame is sorted by the order of 
selection from the original sample and n'=n, the 
variance estimate will be zero. In the other extreme, 
when the bootstrap frame is sorted randomly, the 
variance estimate ignores the original ordering and 

may overestimate the variance. Bootstrap variances 
will be computed using a number of sort orderings for 
each of the simulation samples. Coverage rates are 
computed for each ordering. The coverage rates are 
compared with estimates of the true coverage rate. The 
ordering associated with the coverage rates closest to 
the true coverage rates is the ordering that is used for 
the bootstrap estimator. These comparisons are made 
at a level where the coverage rates should have some 
degree of stability given the number of simulations. 
For the designs in this study, the comparisons are 
made at the general school association/region level. 
The bootstrap sort orders are described below. 

School Sort Method j 
Selected schools within a stratum are sorted by order 

of selection. Next, schools are consecutively paired 
within each stratum. Each pair is assigned a random 
number. The bootstrap-schools generated within each 
pair of schools are assigned bootstrap-school random 
numbers. If n-n" < j, for a stratum, the bootstrap- 
schools are sorted by bootstrap-school random 
number. If n-n" > j, for a stratum, the bootstrap-schools 
are first sorted by the school pair random number; 
within each school pair the bootstrap-schools are 
sorted by the bootstrap-school random number. In 
other words, if the difference between the original and 
bootstrap sample sizes is small, as defined by j, then 
ignore the original sort ordering when randomizing the 
bootstrap-schools. Otherwise, randomize within pairs 
that reflect the original sort ordering. 

The bootstrap program used in these simulations 
requires an initial bootstrap sort. Given this sort, the 
program searches for the sort that minimizes the 
maximum absolute bias in the average, total and ratio 
coverage rates. If the maximum absolute bias is less 
than or equal to 0.07 for a bootstrap sort, then that 
bootstrap sort will be used as the final sort for the 
association. Otherwise, the program tries other logical 
sorts. After the sort searching has finished, the 
coverage rate biases are reviewed and a final 
bootstrap sort is determined for each general 
association/region group. 

Rationale for School Sort Method j 
Sitter shows that if the number of schools in a 

sampling interval is constant across the intervals, then 
n" will be close to n-1. If schools are sorted randomly, 
then the expected number of schools in the intervals is 
constant and n" should be close to n-1. Therefore, if 
n'=n-1, the assumption is that the sort ordering is 
effectively random, so that the school pairing should 
be ignored. Sort method j=l ,  sorts bootstrap schools 
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randomly if n'=n-1. The smaller n* is relative to n-l, 
the more effective the ordering is (i.e., the ordering 
acts less like a random ordering) and the more 
important the school pairings are to the sort method. 
Again, this is the affect of sort method j, when j is 
small. 

When the pairings are ignored, a bootstrap-school 
generated for a particular school is in more sampling 
intervals and therefore can be selected more often. All 
other things kept equal, this should increase the 
bootstrap variance estimate. One then expects the 
variance from sort method j to be > the variance from 
sort method k, when j > k. This rule can be used to 
determine which sort to use to improve the variance 
estimate. The rule, however, does not always work. 
This might be due to random error or to the implicit 
bootstrap-school joint inclusion probabilities that are 
generated. The coverage rate from a particular sort that 
matches the true coverage rate is implicitly: 1) 
matching the effective randomness of the original sort 
(sort method j=l),  adding variability as necessary (sort 
method j > 1), as well as, 3) matching the bootstrap- 
school joint inclusion probabilities to the true school 
joint inclusion probabilities. 

Bootstrap Sample Selection 
Given the bootstrap frame, mbt as the measures of 

size, stratum bootstrap sample sizes and bootstrap- 
school ordering, select the bootstrap sample using the 
same sampling scheme as in the original sample. The 
bootstrap frame is randomized with each sample sele- 
ction. Bootstrap-schools, generated from noncertainty 
schools, with measures of size larger than the sampling 
interval are not removed from the sampling process. If 
a bootstrap-school is selected more than once, the 
bootstrap-school weight is multiplied by the number of 
times it is selected. 

Balanced and Non-Balanced Bootstraps 
Since systematic sampling gives good sample size 

control by values of the first sort variable, the 
variance estimate may be improved if the bootstrap 
samples have the same control (balance). This can be 
achieved by ordering the bootstrap frame by the first 
sort variable. Then, the bootstrap-schools can be 
randomized as described above within each of the 
values of the first sort variable. If the first sort variable 
is continuous there may not be enough bootstrap- 
schools within the sort variable's values to accurately 
estimate the variance using balanced bootstraps. In this 
situation, it might help to categorize the sort variable. 
Both balanced and non-balanced bootstrap variances 
will be presented. 

Number of Replicates and Bootstraps 
Since the old SASS BHR variances are based on 48 

replicates, 48 bootstrap samples are computed for each 
simulation sample. Given the time it take to select a 
set of bootstrap samples, only 60 simulation samples 
are used. 

Bootstrap Weights 
The bootstrap-school weight, Wb~, is: 

Wbi = Ibi * Mbi/Pb i 
Mbi: is the number of times the bi '~ bootstrap- 

school is selected 
Phi: is the bootstrap selection probability for the 

bi ~ bootstrap-school 

E.(E Wb~)=E Ibi --E Wi, as desired. 
bi bi i 

E.: is expectation over the bootstrap samples 

Since the available data are defined by the schools 
selected in the original sample, a bootstrap-school 
weight indexed by i (BWi) is required: 

B W i = E Wbi 

bie SiB 
SiB: is the set of all bi~ i selected in the B ~ 

bootstrap sample. 

Balanced Half-sample Replicates 
The r th school half-sample replicate is formed using 

the usual textbook methodology (Wolter, 1985) for 
establishment surveys with more than 2 units per 
stratum. Since the SASS half-sample variances are 
based on 48 replicates, the simulations will be based on 
48 half-sample replicates. 

Three BHR variance estimates will be presented 
based on the methodology described above. The first 
(BHR no FPC) is the variance estimates described 
above. This estimate does not make any type of Finite 
Population Correction (FPC) adjustments. 

The other two make simple FPC adjustments. The 
second BHR variance estimate (BHR Prob FPC) 
adjusts the first variance estimator by 1-Ph, where Ph is 
the average of the selection probabilities for the 
selected units within stratum h. 

The third BHR variance estimate (BHR SRS FPC) 
adjusts the first variance estimator by 1-nh]Nh, where 
nh is the number of sample units in stratum h and Nh is 
the number of units on the frame in stratum h. 

Low Sampling Rate Design I and II 
The sample frame is the list frame component of 

NCES's Private School Survey (PSS). The list frame is 
stratified by general School Association (4 groups), 
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within Association by Census Region (4 levels), and 
within Region by school level (elementary, secondary 
and combined). The school sample is selected using a 
systematic probability proportionate to size sampling 
procedure. The design I uses square root teachers as 
the measure of size, while design II uses teachers. 
Before sample selection, the school frame is sorted by 
Urbanicity. 

Sample Estimate 
For each of the simulation samples, totals, averages 

and ratios are computed. The variables used are all on 
the sample frame. Two averages, one ratio and three 
totals are computed using estimated schools, teachers 
and students. For each of the 60 simulation samples, 
the sample estimates and respective sample variances 
are computed. An estimate of the true variance for the 
sample estimates can be obtained by computing the 
simple variance of the sample estimates across the 60 
simulations. The bootstrap and BHR sample variance 
can now be compared with the estimate of the true 
variance. 

When determining the bootstrap sort order estimates 
are computed within general school association/region. 
The estimates used in the tables are publishable 
estimates other than the ones used determining the sort 
order. To maintain stability given only 60 simulation 
are used, the samples used in the tables are the same as 
thoses used to determine the sort order. 

The analysis statistics used to evaluate the variance 
estimates is described below. 

Analysis Statistics 
Coverage Rates 

To measure the accuracy of the variance estimates, a 
one sigma two-tailed coverage rate is computed by 
determining what proportion of the time the population 
estimate is within the respective confidence interval. If 
the estimates are approximately normal then the cover- 
age rates should be close to 0.68. 

Coverage Rate Bias (Bias) 
Bias = R o- R, 

Ro: is the coverage rate based or either a bootstrap 
or BHR variance estimate 

R~: is an estimate of the true coverage rate, based on 
the simple variance of the simulation estimates 

The distribtion of the coverage rate bias will be 
presented two ways. The first way, looks at the 
distribution of various publishable estimates implied 
by the sample design, this treats each publishable 
estimate equally. The second way, sums independent 
sets of the publishable total variances to produce a 

overall national variance for a estimated total. This 
method gives larger totals more weight than smaller 
totals and allows for variance underestimates to cancel 
out variance overestimates. In other words, the second 
way, provides a method of judging how well the 
variance procedures works when estimates are 
aggregated to produce new estimates. 

Results - Coverage Rates by Publishable Estimates 
Design 1 (Tables 1-3) 

BHR No FPC variance estimates can be very large 
overestimates (BIAS GE .14); 35, 37 and 11 percent 
of the simulated estimates are in this category 
respectively for averages, totals and ratios. These 
coverage rates are closer to what one would expect 
from a two sigma coverage rate than from a one sigma 
coverage rate. Applying simple FPC adjustments helps 
somewhat, but the FPC adjusted B HR estimates still 
have between 6 to 29 percent in the very large 
overestimate category. 

The tables shows the balanced bootstrap has 8, 4 and 
0 percent in the very high overestimate category, 
respectively for averages, totals and ratios. This is 
much better than any of the BHR estimators. The not 
balanced bootstrap estimator has 16, 35 and 0 percent 
in this category respectively for average, totals, and 
ratios. The 35%, for the not balanced totals comes from 
estimates whose domain are not functions of the 
stratification variables (e.g., urbanicity and 
region/urbanicity). Once the bootstrap sample sizes are 
controlled on urbanicity (balanced bootstraps) the 35% 
drops to 4%. 

For averages and totals, the BHR No FPC has the 
fewest number of estimates in the low bias category ( [- 
.07,0.0) and [0.0, .07) categories); 30 and 14 percent, 
respectively for averages and totals. Applying simple 
FPC adjustments helps only marginally. Within the 
small bias category the bootstrap estimators perform 
better than BHR for averages and totals. The balanced 
bootstrap has 57 and 61 percent, in the low bias 
category, respectively for averages and totals. The not 
balanced bootstrap has 61 and 53 percent, in the low 
bias category, respectively for averages and totals. 

For ratio estimates, the B HR estimators performs 
better than the bootstrap estimators. The B HR 
estimators have between 61 and 72 percent in the low 
bias category, while the bootstrap estimators have 53 
and 58 percent in this category. 

The bootstrap estimators are the only estimators that 
have a few estimates in the very large underestimate 
category (BIAS LT-.14). These coverage rates are 
closer to what one would expect from a .5 sigma 
coverage rate than from a one sigma coverage rate. The 
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balanced bootstrap has 2, 2 and 6 percent in this 
category, respectively for averages, totals and ratios. 
The not balanced bootstrap has 10% in this category 
for ratios. 

Design II (Tables 5-7) 
Tables 5-7 don't give either B HR or bootstrap a 

strong advantage. 
The only estimator that has a large problem in the 

very large overestimate category is the not balanced 
bootstrap, with 20% for totals. The 20% comes from 
estimates whose domain are not functions of the 
stratification variables (e.g., urbanicity and 
region/urbanicity). Once the bootstrap sample sizes are 
controlled on urbanicity (balanced bootstraps) the 20% 
drops to 0%. All estimators have some estimates in the 
very large overestimate category, but usually just a few 
percent. 

For totals and ratios, the BHR No FPC has the 
fewest number of estimates in the low bias category 
([-.07,0.0) and [0.0, .07) categories); 59 and 72 
percent, respectively for totals and ratios. Applying 
simple FPC adjustments helps. For BHR SRS, 67 and 
76 percent are in this category, respectively for totals 
and ratios. For BHR Prob, 74 percent are in this 
category, for both totals and ratios. Within the small 
bias category the bootstrap estimators performs about 
as well as the B HR Prob and SRS estimators, for totals 
and ratios. The balanced bootstrap has 74 and 76 
percent, in the low bias category, respectively for totals 
and ratios. The not balanced bootstrap has 70 and 82 
percent, in the low bias category, respectively for totals 
and ratios. 

For averages, the BHR estimators performs better 
than the bootstrap estimators. The B HR estimators 
have between 55 and 65 percent in the low bias 
category, while the bootstrap estimators have 43 and 
51 percent in this category. 

Results - Coverage Rates for Overall Estimates 
The results presented above treat each estimate 

equally. The results in this section, provide a 
measurement of how well the estimators work when 
estimates are aggregated. Table 4 shows that for 
designs I and II, the bootstrap coverage rate biases are 
much smaller than the BHR coverage rate biases. The 
bootstrap biases are between 0.8 and 2.6 percent, while 
the BHR biases are between 3.8 and 7.3 percent. The 
no balanced bootstrap biases are the lowest. This 
indicates, since the main purpose of the balancing is to 
improve variance estimate for domains defined by the 
first sort variable, that if the only variances required 
are where the domain is defined by the stratification 

then the no balanced bootstrap is better than the 
balanced bootstrap. 

Conclusions 
The overall conclusion is that the bootstrap methods 

are better than the BHR methods for the designs in this 
study. How much better one method is than another 
depends on the sample design and the estimates of 
interest. 

Coverage Rates for Published Estimates 
These coverage rates treat each estimate equally. 
For design I, using square root teachers as the 

measure of size, all BHR procedures have serious 
problems overestimating the variance. The balanced 
bootstrap procedure has a much smaller problem 
overestimating the variance. The no balanced bootstrap 
procedure overestimate the variance a large percent of 
the time when estimating averages and totals. For 
totals, this overestimation is caused from domains that 
are not function of the sampling strata. 

For design II, using teachers as the measure of size, 
BHR Prob and the balanced bootstrap are comparable. 
The no balanced bootstrap procedure overestimate the 
variance a large percent of the time when estimating 
totals, but the the overestimation is caused from 
domains that are not function of the sampling strata. 

Coverage Rates for Overall Total Estimates 
These estimates provide a measure of how well the 

different variances work when aggregaing estimates. 
For both designs, the no balanced bootstrap is better 
than the balanced bootstrap. This indicates, if the only 
variances required are where the domain is defined by 
the stratification then the no balanced bootstrap is 
better than the balanced bootstrap. Both bootstrap 
methods are superior to all of the B HR methods. 
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Table-- 1 Publishable Estimate Dist. of Coverage 
Rate Bias for Averages using Private 
Design I 

Bias 
Averages 
(% Freq.) 
LT -.14 
[-. 14,-.07) 
[-.07,0.0) 
[0.0,,07) 
[.07,.14) 
GE .14 

Bootstrap 
Bal No 

Bal 
2 0 
2 2 

14 20 
, , ,  

43 41 
31 21 

8 16 

BHR Estimates 
Prob SRS No 

FPC 
o o o 
2 2 0 

12 12 8 
29 25 22 
39 43 35 
18 18 35 

Table-- 2 Publishable Estimate Dist. of Coverage 
Rate Bias for Totals using Private 
Design I 

Bias 
Totals 
(% Freq.) 
LT -.14 
[-. 14,-.07) 
[-.07,0.0) 
[0.0,.07) 
[.07,.14) 
GE .14 

Bootstrap 
Bal No 

Bal 
2 0 
0 0 

14 20 
47 33 
33 12 

4 351 

BHR Estimates 
Prob SRS No 

FPC 
0 0 0 '  
0 0 0 
6 6 4 

26 22 10 
, ,  

41 43 49 
27 29 37 

Table-- 3 Publishable Estimate Dist. of Coverage 
Rate Bias for Ratios using Private 
Design I 

Bias 
Ratios 
(% Freq.) 
LT -.14 
[-. 14,-.07) 
[-.07,0.0) 
[0.0,.07) 
[.07,.14) 
GE .14 

Bootstrap 
Bal No 

Bal 
6 10 

29 22 
27 27 
26 31 
12 10 
0 0 

BHR Estimates 
Prob SRS No 

FPC 
o o o 

, 

10 10 8 
33 31 20 
39 41 41 
12 12 20 
6 6 11 

Table -- 4 Average Coverage Rate Bias from Overall 
Estimates of Totals Generated from 
Independent Groups by Design and 
Variance Estimator 

Percent 
Private 
Design 

Design I 
Design II 

Bootstrap 
Bal No 

Bal 
0.9 0.8 
2.6 1.9 

BHR Estimates 
, ,  

~ob S ~  NO 
FPC 

4.0 4.1 6.1 
3.8 5.4 7.3 

Table-- 5 Publishable Estimate Dist. of Coverage 
Rate Bias for Averages using Private 
Design II 

Bias 
Averages 
(% Freq.) 
LT -.14 
[-. 14,-.07) 
[-.07,0.0) 
[0.0,.07) 
[.07,.14) 
GE .14 

Bootstrap 
Bal No 

Bal 
4 6 

18 14 
14 10 
29 41 
31 25 

4 4 
, ,  . 

,BHR Estimates . 
Prob SRS No 

FPC 
4 '0" 0 

18 21 8 
18 12 24 

,, 

47 43 33 
11 18 25 
2 6 10 

Table-- 6 Publishable Estimate Dist. of Coverage 
Rate Bias for Totals using Private 
Design II 

Bias 
Totals 
(% Freq.) 
LT -.14 
[-.14,-.o7) 
[-.07,0.0) 

, ,  

[0.0,.o7) 
[.07,.14) 
GE .14 

Bootstrap 
Bal No 

Bal 
4 0 

8 
31 35 
43 25 
12 12 
0 201 

BHR Estimates 
Prob SRS No 

FPC 
2 0 0 

, , ,  

12 8 4 
25 24 14 
49 43 45 
10 23 33 
2 2 4 

Table-- 7 Publishable Estimate Dist. of Coverage 
Rate Bias for Ratios using Private 
Design II 

Bias 
Ratios 
(% Freq.) 
LT -.14 

, ,  

[-. 14,-.07) 
[-.07,0.0) 
[0.0,.07) 
[.07,.14) 
GE .14 

Bootstrap 
Bal No 

Bal 
0 0 

12 10 
53 45 
23 37 

8 6 
4 2 

BHR Estimates 
Prob SRS No 

FPC 
0 0 0 

20 10 4 
41 45 25 
33 31 47 

4 12 20 
2 2 4 

1 The increase bias relative to the balanced bootstrap is 
due to the bias in estimates that are not functions of the 
stratification variables (i.e., urbanicity and 
region/urbanicity). Balancing the bootstrap samples by 
urbanicity reduces the bias. 
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