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Abstract 

There are a number of asymptotically equiv- 
alent procedures for deriving the Taylor series approx- 
imation of variances for complex statistics. In Binder 
and Patak (1994) the theoretical justification for one 
class of methods was derived. However, many of 
these methods can be derived for practical examples 
using straightforward techniques that are not dearly 
described in Binder and Patak. 

In this paper we give a "cookbook" approach 
that can be used for many examples, and that has 
been shown to have good finite sample properties. 
Normally the method of choice becomes dear through 
arguments such as model-assisted methods or lineariz- 
hag the jackknife; however, using our approach yields 
the desired results more directly. 

As well, we present new results on the 
application of these techniques to two-phase samples. 

1. The Method 

The derivation of the asymptotic variance for 
a wide class of estimators from complex survey 
samples is now well established in the literature, at 
least to a first order approximation. However, there 
are a number of competing estimators of the variance, 
all of which are asymptotically equivalent. In this 
paper, we discuss a simple derivation of one of the 
most favoured of these estimators in a general setting. 
This simple derivation is useful for practitioners, who 
may be baffled by the choices available, and need a 
quick solution to the problem. 

We start with a simple example of the 
approach using the ratio estimator of a population 
total. Here the estimator is 

I~R =/~X, (1) 

for /~ = IT'/J~, and ~ = ~ wt~yk, 
kEs 

where, s is the set of indices corresponding to 
sampled units and w~ is the sampling weight, normal- 

ized so that ~w t is an estimator of the population 

total; e.g. w k-- l/hi,where n k is the first order inclu- 

sion probability. The definition of Jf is analogous to 

that of I~. Applying total differentials to both sides of 
(1), we obtain 

Cat.)  -- x ,  (2a) 

where (dR) -  ( d Y ) - ~ ( d X )  (2b) 
2 2 2 

X 

Note that (2a) does not include the total differential of 
X, the population total of the x-variable, since X is 
assumed to be fixed and known. 

The next step is to replace all total differen- 
rials of estimated quantifies by deviations from the 
their respective expected values. On the right hand 

side, we substitute for (dY) the expression 
(]Ewk Yk-Y), and so on. For the quantity of interest, 

I~, we replace d I~g by I? R -Y. From (2), performing 
this step, yields 

- x 

:t 
(3) 

We see that this expression contains a number of 
weighted estimators - those that explicitly show their 

dependence on the wk's, (~wky k and ~wkxk) and 
those where the wk's are implicit in the expression 

and 
For the last step, we isolate z k, defined by 

rewriting (3) as 

YR- Y "- ~'wtzt + other terms not depending 
explicitly on w t . 
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Here, we obtain 

x z, =  (yk xk). (4) 

Note that ~ w k z k has the form of the estimate of the 

population total of the variable z. 

Now to obtain the variance of I~,, we insert 

the new variable z k into the k-th sample record, and 
use a standard procedure for estimating the variance 
of a total, applied to this variable. It is assumed that 
a variance estimator with good properties is available 
for the sample design under consideration. 

A summary of the method in general is the 
following: 
1. We let the estimator of T be 1" and take its 

total differential. We assume that 2V is 
asymptotically design consistent. 

2. We replace total differential of T, d?', by 

T-  T. We replace all other total differentials 
of estimated quantifies by the deviation from 
their respective expected values, where we 

substitute for (dI ~) the expression 
(Ewk Yk- Y), and so on. 

3. The last step is to isolate zk, when we rewrite 
the result of Step 2 as 

T - T  - ~,wkz k +other terms not depending 
explicitly on w,. 

0 Finally, to obtain the estimated variance of I", 

we insert the new variable z k into each 
sampled record, and use the standard pro- 
cedure (known to have good properties) for 
estimating the variance of a total, applied to 
this variable. 

Simplest Cnmeml Case 

For one-phase samples, a simple general case 
is where the estimator can be expressed as a 
differenfiable function of the estimated totals for 
certain survey variables, some of which may be derived 
variables at the final sampling unit level. In this case 
our approach gives: 

t = g(t,...,t,). (5) 

[ag(t)] 
(df  . E (6) 

t-r - E, as(t)]at, 
= ~_a WkZk + ""' 

(7) 

] where zk= ~ a o ~ ~ ) Y e =  a yk. (8) 

In what way is this formulation different from 
standard Taylor methods? The main difference is how 
expression (7) is treated. In standard methods, the 
partial derivatives are evaluated at their expected 

values before z k is derived. Then, for those compo- 

nents of zk that are unknown, an estimator is substi- 
tuted. For the ratio estimator, (1), this would result in 

XlfC disappearing from z k in (4), since the expected 

value of Xlff is unity. The k remains in the express- 

ion, as it is used to estimate R, which is needed in the 
usual derivation of z k. 

Kott (1990) argues that the variance estimator 
for the ratio which we have derived has good condi- 
tional properties compared to the estimator which 

leaves out the factor Xlff. A number of others have 
come to similar conclusions. Rao (1995) showed that 
the method agrees with that obtained from the lineari- 
zed jackknife. Our conjecture is that since the partial 

derivatives in expression (7) are evaluated at ~" rather 
than Y, the linearization is "closer" to the original 

statistic, T, so that the resulting variances have better 
properties. This is, of course, not a technical state- 
ment, but rather an intuitive justification of the 
method. 

We note that in expression (8) for zk, all the 
terms are directly observed from the sample, so that 
no substitution of estimators for unknown quantities is 
needed. 

The Case m~h E.xlra Pammaers 

For many examples, the estimator is most 
easily defined in terms that include the use of parame- 
ters that are only used to simplify the definition of the 

parameter of interest. For the ratio estimator, k is an 
example of such an extra parameter. In this case, an 
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explicit equation for the estimator of the extra parame- 
ter is available. The general method in the presence 
of extra parameters may be written as: 

t -- 8', (1~1,..., I~., J,), where [ = g~ (l~,..., l~,,), (9) 

(dr) - ~[ae~(Zt, a]>, ) (de,) 

(dx,), 
(lOa) 

where (dX,) - E (d}',), (lOb) 

t - r -  E ag,(e,X) (Ew~y _r, ) a~, ,: 
agl ( }", j. ) ag2j(~') 

( E w~y~- r, ) 
k 

= ~_~ WkZk + ..., 

(11) 

where 

z,; a,~ (:f', J.) ' = ' - YI + ' 
or a~ ' a~" Y'" 

02) 

For the case where the extra parameters are 
defined only implicitly through estimating equations, 
we have the following generalization: 

1" : g ( 17' l, ..., 17,,,, J.), (13a)  

where U( I? 1, .... l~ m, ~.) = O. (13b) 

(dr) = ~[ag(f,,t)a~,, (d I~'i )+ [ag(i"~-) ] / aJ. (d~), 

(14a) 

where by taking the total differential of (13b) and 

isolating (d ;.), we have 

- ; i  E 
aO(ir, i ) ]  ; ~  (d I}, ). (14b) 

f-r-r,(a-~~,), (]~ wd~-r , )  

= ~ WtcZk+ .... 

(15) 

where 

= l o g  ]/ _ [ a g ]  / [ 0 0 ]  -1 [ 0 0 ]  / . (16) 

We see, of course, that (16) is a generalization of the 
previous forms for z~: given in (8) and (12). 

2. O t h e r  E x a m p l e s  

Expressions (8), (12) and (16) above are dis- 
played only for the purpose of giving the specific 
formulae for the various cases. However, in practice, 
we recommend using the basic steps from first prin- 
ciples. To demonstrate this, we give two examples: 
one is the familiar Generalized Regression Estimator 
(GREG); the other gives some new results for the 
Wilcoxon Rank Sum Test statistic for data from 
complex surveys. 

~ R~v.ss/on F_.n/mator 

The usual Generalized Regression Estimator, 
given, for example, in SS.rndal, Swensson and Wretman 
(1989), may be written as 

(17) 

where the extra parameter ~ is defined as the solution 
to 

I 
w k x k ( y l , - X k ~  I i c  k = O, (18a) 

k 

where c k is the factor to allow for heteroscedastic 
variance in the regression model. This is equivalent to 

~=~-~. ,  -- o, OSb) 
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with obvious definitions for ~ and ~ .  Taking total 
differentials in (181:)) we get 

so that Cd i~) - ~g[Cd~,.,)- ca~=)),]. 

Therefore, we have 

have 

~- II "- E w~[xk(Y~-X~l l ) ] lck+ .... (19) 

Now, taking total differentials of (17), we 

(d~>a~O) = ( d ~ )  - l~'(d~) +(dl~ ) ' ( X - ~ )  
= CdY)-~/Cd2~)+[CdS/m)-O/Cdl~zz)]S~ 1 ( X - X ) .  

After some algebraic manipulation, we obtain 

where e k --y~: - x~ ~. We, therefore, def'me 

z~ -- ek[ l + x~,~I CX-.~)/ck ]. (21) 

Taking the variance of the estimated total of 

this z-variable is identical to the variance proposed in 
Sarndal, Swensson and Wretman (1989). There, it is 
argued on the basis of the validity of the regression 
model, that this variance is preferred to other Taylor 
expansion estimators for the variance. We see that the 

derivation of this z -variable is natural in our approach. 

Wi/caron Rank Sum Stat/s't/c 

We now show how our method works in the 
case of a more difficult non-standard case. We 
assume that our sampled units belong to one of two 
subpopulations which we name Population 1 and 
Population 2. We define 

1 if x<y,  
l{x ~y} = 0 otherwise, 

a n d  1 if k e Population 1, 
8k = 0 otherwise. 

We let 

~(t) = ~ wkSkZ{xk~t), 
k,~'s 

which corresponds to the estimated number of Popula- 

tion 1 units that have values less than or equal to t .  

We define N~(t) analogously. We denote 2~1=~(**), 
the estimated number of units in Population j .  Now 
a weighted version of the Wilcoxon Rank Sum Test 
statistic is 

t,,: f: ta~c,>-,-&c,>],~,c,:~. (22) 

This corresponds to the weighted sum of the ranks 
from Population 1 among the weighted ranks of the 
combined sample. Under the null hypothesis that the 
two populations have the same distribution, the 

expected value of this statistic is N 1 (N 1 + N 2)12. We 
therefore consider the statistic 

t;= fo" t&( ,>÷~c ,>le~ , ( , )  - • (23) 

We use h rather than d to denote the total 
differential, since d is used under the integral. There- 
fore, we have 

+f: t~,(t)+ x,~(o] a,, xq(o (24) 

c,, x,,) cx,~ + ~ ).,.x,, c,, x,, + , , ~  ) 
2 

Continuing with our usual approach, we have 

']'~,,- T~I, - f :  ( ~wkl{xk st}) dl~l(t ) 

2 

(z~ 

4- o ° °  ) 

so that 

zk = ~ w~ 8j I Txk ~ x~) + 8 ~ [ ~ ,  (x k) + ~2(x~ ) ] 
] 

° 

2 

(26) 
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We are not aware of this result previously 
being documented. It can be shown that when the 
null hypothesis is true and we select independently 
from two populations, where the samples are indepen- 
dent and identically distributed, the variance we obtain 
from the z-variables in (26) is asymptotically equival- 
ent to the usual classical formula. 

3. Two-phase Samples 

The method described above extends quite 
easily to the case of two-phase samples. For example, 
consider the two-phase ratio estimator of the popula- 
tion total, given by 

= = R $  (27) 

where 2~(1)=~ wkxk is the first phase estimate of X 

based on first phase weights {wk} , and I~ and X are 

the estimates of Y and X, respectively, based the 
second phase sample units with weights {wk.w~), 
where w~ is the weight assigned to the selected 
second phase unit, conditional on being in the first 
phase sample. In particular, letting 

1 if the k-th unit is in the second phase 
a~ = sample, 

0 otherwise, 

we have I) = ~ wkwz~akyk, (28) 
k{;$ 

where s is the set of indices corresponding to units in 
the first phase sample. 

Taking total differentials of (27), we have 

(d]~Rm) = [(dlr)-.~(d2f)]+R(dX°)). (29 )  

We now replace the total differentials by weighted 
sums over first phase units: 

k~.s 

(Yk xk ÷ --', 

so that Zk= akw~(~c.~-~--~)(yk-/~Xk)+/~X~. (31) 

We see that the steps we have taken are essentially the 
same as in the one phase sample case. However, it is 
important to note that now zk contains the random 

variable, %, that is used to indicate whether or not the 
sample unit is in the second phase sample. This is 
needed to compute the two phase variance estimator. 

Variances obtained from the z-variable in 
(31) are identical to those given in Rao and Sitter 
(1995), who used a lineafizztion of the jackknife to 
obtain their results. 

Extensions to other estimation problems in 
two phase samples are straightforward. Suppose, for 

example, that (I) 1, ..., I) m) are estimates of( Y1,---, Ym) 

from the second phase samples, and that (~l ) , . . . ,~D) 
are estimates of variables available only for first phase 

sample units. We suppose that a set of extra parame- 
ters, ~., are defined only in terms of the units in the 
second phase, and that the variable of interest is 
def'med in terms of these extra parameters and the 

X) 1)'s. Formally, then, we have 

u ( L  = o ,  (36a) 

and I" = g(X(1),~. ). (36b) 

Taking total differentials, we have as in (14b), 

so that 

(37) 

T-T-[ Og ]/ 
02(1 ) ( Ek Wk "g'k - X ) 

(3a) _ [o 1'[oo1-1 [oo 
La- ] LaiJ W (~ akwkw~y'-¥)" 

Therefore, the general expression for z k is 
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It then becomes necessary to put the z-variable into 
the algorithm that estimates the variance of the 
estimator of a total from a two phase sample. 

4. Justification 

The technique we have described can be con- 
sidered as a direct result of the formulation given in 
Binder and Patak (1994). We will summarize one of 
the main results in that paper. Suppose we are 
interested in parameter 0, def'med as the solution to 

O,(o,i o) = ~ wku,(y ~, o, i o) : o, (4o) 
kEs 

where i. o is the estimate of a n  extra parameter, 
defined as the solution to 

ll2(O, ~'o) = ~ wtuz (Yt, O, ~'o ) = O, (41) 
k f~ s 

for a given 0. Through an argument based on 
removing extra parameters for problems of testing 
hypotheses on 0, Binder and Patak recommend basing 
inferences about 0 on the variable 

rao  
: u,(r,0,x0)t  a~.o u2(y,O, ~.o). (42) 

In particular, two-sided confidence intervals for 0 are 
to be based on 

0 
0~ (0, J-o) 2 } 

<Xl_,(1) (43) # 

where if' is the estimated variance of the estimator of 

a total when the variable being estimated is u *. 

We let u I = g (X I, ~'z) - 0. The kernel of the 

estimating equations for the y-totals will be given by 
u21 =Y - )-i and the kernel of the estimating equations 

for X 2 is given by u~ (X x, ~'2 ). We let 

U2 - E wt = , where N = E  wt'(44) 
LUaJ J 

After some algebra, from (42) the variance of interest 
is the variance of the estimated total based on the 

variable u *, given by, 

[ ] [ ] ag(il,~2) ag( x , ,£  2 ) y _, 

a~. 1 a~. 2 
au~ a$-2( ~'l, $'2 )]-t 

au n( l , , i  2) 
ail 

y + constal3t terms. 

This is equivalent to expression (16), thus showing that 
the methods here are consistent with those in Binder 
and Patak (1994). 
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