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This is a report of a project to estimate certain 
components of variance for the United States 
Consumer Price Index (CPI). This report deals 
with eslimating components for the commodities 
and services part of the CPI. These variance 
components are estimated by Restricted 
Maximum Likelihood (REML) and the usual 
anova type estimators. It is seen that the REML 
methods produce nonnegative estimates of 
components of variance whereas the anova 
estimates will produce negative estimates of 
some components. 

In section one the sampling design will be 
introduced. In section two the model for the 
components is built. The estimation 
methodology will be explained in section three 
and findings will be presented in section four. 

1. Introduction and 1987 Design Description 

The Bureau of Labor Statistics (BLS) is 
currently mal~g prepm-ations for the next 
revision of the CPI. Decisions must be made on 
methodology and allocation of resources for the 
upcoming revision and relative sizes of the 
components of variance will be a factor in this 
process. In the 1987 revision, the sample size for 
the commodities and services (C&S) part of the 
CPI was allocated using an optimization scheme 
in which components of variance were used as 
parameters, as reported in Leaver, et al (1987). 

In this paper, the relative size of four 
components of variance associated with change 
in the commodities and services index are 
estimated. The four components are related to 
the sample design which will be explained in the 
following paragaphs. 

For a full discussion of the CPI the reader is 
referred to Chapter 19 of the BLS Handbook of 
Methods, (1992). However, the following 
fe, atmes of the CPI are important for the present 
discussion. 

According to the Handbook, p 176, "The CPI 
is a measure of the average change in the prices 
paid by urban consumers for a fixed market 
basket of goods and services." It is calculated 
monthly for the population of all urban famih'es 
and also for the population of wage earners and 
clerical workers. The CPI is eslimated for the 
total US urban population for all consumer items, 
but it is also estimated at other levels defined by 
geographic area and groups of items such as 
food, shelter, and transportation. 

Pricing for the CPI is conducted in 88 PSUs in 
85 geographic areas (New York city consists of 3 
PSUs and Los Angeles consists of 2 PSUs). In 
the CPI area design there is random selection of 
PSUs according to a stratified design in which 
one PSU is selected from each stratum. The 
method of controlled selection is used and t t~ 
complicates the actual randomization 
distribution. There are four classes of PSUs. The 
32 A PSUs are metropolitan statistical areas 
(MSAs) which, because of size or unique 
characteristics are selected with certainty. Other 
MSAs are classified as either large (L) PSUs or 
medium (M) PSUs. Of these MSAs, 20 L PSUs 
and 24 M PSUs are in the current sample design. 
Urban areas not included in MSAs are classified 
as R PSUs. The current CPI contains 12 of these 
sampling units. The boundaries of these PSUs 
were defined by BLS. A description of the PSU 
selection for the 1987 revision can be found in 
Dippo and Jacobs (1983) and an update of the 
PSU selection for the 1998 revision is described 
in Williams et al (1993). The 32 A PSUs are 
referred to as certainty or self-representing PSUs. 
Thirty of these 32 PSUs are the largest 
metropolitan areas. For the remaining strata, the 
selected PSUs are referred to as non-self- 
represenling PSUs. 

The PSU stage of sample selection is common 
to both housing and C&S. In the C&S part of the 
CPI the next step is to independently sample 
outlets and items within each PSU replicate 
combination. The outlet sample is based on the 
Continuing Point of Purchase Survey (CPOP$), 
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conducted by the Bureau of the Census, and the 
item sample is based on the Consumer 
Expenditure Survey (CE), also conducted by the 
Bureau of the Census. Outlets are selected in 
eight POPS categories using a systematic pps 
sample. Items are selected in eight major groups 
using a stratified systematic pps sample. 
Selections from the independent samples are 
then matched by POPS expenditure category. 
For example, if Safeway at 1315 North Van Dora 
street in PSU A315 is selected in the food and 
beverages category and the Entry Level Item, 
bananas, is selected in the major group food and 
beverages, then BLS will attempt to price 
bananas in this outlet. In the outlet the BLS field 
representative (FR) will follow a process called 
disaggregation to obtain a unique quote on 
bananas in this outlet. The entire process is 
described in the Handbook p 185. The four stages 
of sampling lead to four components to be 
modeled. 

The design is complicated by the fact that 
some items such as Food are priced monthly, 
while in all but the five largest PSUs other items 
such as Apparel are priced on an every other 
month basis. This makes comparing 
components across time difficult. 

The CPI is a modified Laspeyres index, which 
is a ratio of the costs of purchasing a set of items 
of fixed quality and quantity in two different time 
periods. The index is estimated at the PSU level 
although not all PSUs are published. Let IXit, s 
denote the index at lime t, in PSU i, relative to 
time period s. Then 

IXit, s = lO0*CWit / CWis 

where CWit and CWis denote the aggregated 
weighted prices in PSU i for times t and s 
respectively. 

2. The Model 

The C&$ part of the CPI, as mentioned in the 
previous section, can be considered to have four 
components of variance corresponding to the 
four stages of sampling. In order to model 
variance components it is typical to write the 
random variable of interest as a sum of fixed 
components and random components with a 
random component corresponding to each 
component of variance. Thus we can write the 
price relative, the price change from time s to 
time t, for each unique item as 

where/~t,, is a fixed factor, a;t ~ is a random 

factor corresponding to PSU selection, flz~ is a 

random factor associated with outlet selection, 

Y~tt~ is a random factor associated with item 

selection, and ~ . ~  is a random factor 

corresponding to selection of the unique quote. 

The assumptions on ( }, }, 

and {~'~ut~) are that they are mutually 

independent with mean 0, the a~.tj are identically 

distributed with variance o~ (t, s) ,  the fl,)~,, are 

identically distributed with variance c~p(t, s), the 

7~~ are identically distributed with variance 

or2 r(t,  s), and the ~'qu~ are identically 

distributed with variance ~ ( t ,  s). No attempt 

will be made to model this as a time series so the 
dependence on the parameters t and s will be 
suppressed. Our current work is to es~nate 

the four components of variance, c¢~. @ O~r , 

and o2~. Typically these estimates will be 

presented as proportions of the total variance. 
Note that because of the conlmlled selection of 
PSU's a true design-based eslimate of the PSU 
component of variance is dif~cult, if not 
impossible to compute, leading us to use the 
model-based approach described here. 
Furthermore the form of the standard Anova 
estimators allows the e s t a t e  of the PSU, outlet 
and item components of variance to be negative, 
although the probability of this happening is 
guaranteed to converge to zero as the sample size 
increases. A discussion of this type of problem 
can be found in Searle, Casella and McCulloch 
(1992). As can be seen from the est~nates 
produced, this unforttmate phenomenon does 
actually occur so other methods of estimation are 
needed in this case. Among the limited options 
are taking the positive part of the anova 
estimator, restricted maximum likelihood, or 
using a Bayesian estimator. A Bayesian eslimator 
under squared error loss is guaranteed to be 
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nonnegative and a Bayesian estimator was also 
considered because of certain successes in a 
similar situation with BLS data. See Baskin 
(1993) where three components of variance in the 
housing part of the CPI were estimated under a 
hierarchical Bayes (FIB) model using Gibbs 
sampling. In the present work, a Bayes estimator 
of the components of variance is derived under a 
hierarchical normal model similar to the 
estimator used in Baskin (1993). This HB 
eslimator has the desired property of being a 
smooth nonnegative estimator of the variance. 
Simulations in the balanced case have also 
shown that it performs satisfactorily for small 
and moderate sample sizes and for a variety of 
distributions including heavy tailed distributions. 

For this estimator consider the fonowir~l~ 
c c ~ ~th hiera~ hi al model. Let Xi.ld denote the 1 

unique quote from the k item selection and the 
jth outlet selection in the i th PSU. Let K i be the 
number of items in PSU i, J i be the number of 
outlets in PSU i, and Lij k denote the number of 
unique quotes in PSU i, Outlet j, and item k. Also 
let I denote the number of PSUs. Assume that 

Xijkl = ~) .~  + e~jl~t~, Lij k where eqt~, s given 

are i.i.d. N(0, ~ ) .  Here, ~,).~ represent 

a sum of terms corresponding to PSU, outlet, 
and item selection. Thus 

Now assume that a ;  given c¢~,~ are i.i.d. 

N(0,  o~,,) if i corresponds to a non-self- 

representing PSU, cr~ are 0 for seN-representing 

PSUs, /8 0. given c~p are i.i.d. N(O, c~p), 7,k 

given ~ are i.i.d. N(O, ~ ) ,  ~t, are i.i.d. 

N(U0, o~,),, d.--IOtal.bl]. ~---IOta2.b2]. 

Ogr---IGta3,b3], ~qO[a.b4] and all are 
independent. (x--IO[a,b] means that x is inverse 
gamma with density f(x)=bae'bht/F(a)x(a*l) if 
(x>O)). 

We are interested in finding the posterior 
distributions of the parameters given the 
observations and the other parameters. The 
posterior distribution of the vector ~ given the 

rest of the parameters and the observations is 
multivariate normal with entries of the mean 

o-2/~"~j + ~ o  -2 , 
vector given by.. " if i corresponds 

o'2trK,j + o "2 , 

o2#X•.j. + o~t 
to a self-representing PSU and p , J ~  + o.2 t if 

i corresponds to non-serf-representing PSU. 
Similarly for the ~ 0~, [3, and 7 the posterior 
means can be derived. For the parameters of 
interest, the sigmas, the posterior depending on 
the observations and the rest of the parameters 
are inverse gammas. The posterior distribution 
of %2 given the rest of the parameters and the 
observations is inverse gamma, 

f(41 o.',,, ~, g,x,o-. 
~ ,  +r÷÷+/2;b, + y: ~ ~ y.(x,,,,-¢,,,~)'/21 

j k l 

Also 

Y(~l, ,~t)  - zo[~, + x** / 2;b, + Z Z r~' / 2] 
t k 

f (  ~lrest)  - lG[a2 + J÷. / 2;b 2 + ~", ~",,B# 2 / 2] 
i j 

2 
f ( ~ [  res t )~  IG[ a 1 + N / 2; b a + ~ a, ] 

i 

where N is the number of non-self-representing 
PSUs. 

3. Methodology 

The maximum likelihood method is described 
in Searlo, CasoUa and McCulloch (1992). This 
technique is based on the same model as the 
anova estimates but assumes that the data is 
normally distributed. The estimates are made by 
maximizing the log of the density function of the 
data. Usina the notation from Scare, Casdla and 
MoCullooh (1992), let V denote the total varianoe 
matrix for the observations. The density to be 
maximized is 
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e-i(x-~)' (x-~) 
f ( x ) -  ' ¢ 1  

(2zO 2 Ivl 
where IVl denotes determinant of V and N 
denotes the full sample size. This maximization 
must be done by mtmerieal techniques which are 
typically iterative in nature. The most common 
approach is some variant of the Newton- 
Raphson method although the EM algorithm is 
another popular technique. 

The Gibbs sampling methodology which has 
been used in this work to estimate the 
components of variance is described in several 
recent papers but one of the standard references 
is Gelfand and Smith (1990) with several nice 
examples presented in Gelfand et. al. (1990). The 
Gibbs sampling methodology is both 
conceptually simple and easy to implement. The 
major drawback is the fact that it is 
eomputationally inefficient. In a problem such as 
the present problem with a large number of 
pmmaaeters computational efficiency is an issue. 
The issue of convergence is dealt with in Gelfand 
and Smith (1990) where it is shown that under 
relatively mild assumptions the rate of 
convergence is exponential. 

Another typical problem which arises when 
using Gibbs sampling is sensitivity to initial 
values for the parameters. For estimates of 
variance, zero is an absorbing state for the Gibbs 
sampler so that values close to zero can "trap" 
estimates close to initial values. This situation 
seems to be the case for the estimation attempted 
and no viable solution was found. Further work 
may yield a solution but at this point the Gibbs 
sampling technique is not useable. 

4. Findings 

The current research uses price change for the 
periods from 9201 to 9411 (YYMM format) but 
December data was not available. Price change 
for different lengths of time was investigated. 
Two month, six month and one year price 
change were used. For one year price change, 
this allows creation of twenty two price change 
variables, since December data was not available. 
The intent is to calculate the components for 
each of the eight major groups within each of the 
four Cereus regions. R is clear from the results 

that there are very large differences by region so 
the regions cannot be combined. 

In Table 1. the anova estimates and the 
restricted maximum likelihood estimates are 
presented for the first major group, apparel, and 
for the first time period, January 1993 to January 
1994. For the variance component PSU, the 
order of the estimates appear to be similar. The 
outlet component shows the largest discrepancy. 
The anova estimates are negative which are 
usually interpreted to mean that the variable is 
not really significant in the model. The renal 
estimates indicate that the outlet component is 
the largest component. The anova eslimate of 
item indicates that item is the most important. 
This discrepancy makes the results difficult to 
interpret. 

TABLE 1. 
ESTIMATES FOR ONE YEAR CHANGE 

9301 to 9401 

PSU OUT I T E M  ERROR 
NE region 
reml 0.0629 0.4440 0.1302 0.2769 
anova 0.0411 -0.1658 0.7723 0.1637 
MW region 
rernl 0.0892 0.0913 0.0399 0.2085 
anova 0.0888 -0.0554 0.1918 0.2113 
SO region 
reml 0.0430 0.0913 0.0424 0.2364 
anova 0.0220 0.0967 0.0583 0.2036 
WE region 
reml 0.3133 0.3468 0.1299 0.3137 
anova 0.2477 0.2818 0.1798 0.2871 

Since estimates were made for several periods 
of one year change, the average of the estimates 
were calculated to see if there appeared to a 
consistency over lime. 

TABLE 2. 
ESTIMATES FOR ONE YEAR CHANGE 

PSU 
NE region 
r e c a l l  

9401 
9402 
9403 
94O4 
94O5 
94O6 
9407 

OUT I T E M  ERROR 

0.0297 0.1477 0.2737 0.2151 
0.0411 -0.1658 0.7723 0.1637 
0.0381 0.1262 0.1864 0.1694 
0.0760 0.0000 0.6429 0.1412 
0.0423 0.1804 0.1176 0.2743 
0.0158 0.1929 0.2211 0.1851 
0.0000 0.3379 0.1017 0.3109 
0.0257 0.1287 0.2240 0.1713 
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9408 0.0191 0.3367 0.1010 0.3088 
9409 0.0101 0.0849 0.2355 0.1786 
9410 0.0350 0.1301 0.1138 0.2721 
9411 0.0234 0.1069 0.2946 0.1910 
MW region 
mean 
9401 
9402 
9403 0.0846 0.1656 
9404 0.0000 0.0746 
9405 0.1102 0.1605 
9406 0.0132 0.0945 
9407 0.0798 0.0610 
9408 0.0078 0.0392 
9409 0.0267 0.1660 
9410 0.0054 0.0793 
9411 0.0009 0.1131 
SO region 
m e a n  

9401 
9402 
9403 
9404 
9405 
9406 
9407 
9408 
9409 
9410 
9411 
WE region 
mean 0.1701 0.1644 
9401 
9402 
9403 
9404 
9405 
9406 
9407 
9408 
9409 
9410 
9411 

0.0385 0.0939 0.1154 0.1167 
0.0888 -0.0554 0.1918 0.2113 
0.0065 0.0788 0.0477 0.0530 

0.1534 0.1469 
0.0964 0.1029 
0.2192 0.1705 
0.0639 0.0688 
0.2665 0.1707 
0.0868 0.0877 
0.0577 0.1006 
0.0332 O. 1117 
0.0523 0.0595 

0.0560 0.1652 0.0934 0.1921 
0.0220 0.0967 0.0583 0.2036 
0.3288 0.7253 0.0959 0.1442 
0.0739 0.0922 0.1018 0.2178 
0.0000 0.1732 0.0075 0.1281 
0.0508 0.2523 0.1052 0.2036 
0.0063 0.2400 0.0452 0.1202 
0.0649 0.0000 0.3144 0.2345 
0.0345 0.1229 0.0495 0.2335 
0.0103 0.0577 0.0810 0.2274 
0.0180 0.0391 0.1082 0.2799 
0.0060 0.0182 0.0605 O. 1198 

0.2477 0.2818 
0.1865 0.3492 
0.3717 0.0000 
0.4723 0.3789 
0.3092 0.1069 
0.1529 0.3131 
0.0592 0.3323 
0.0108 0.0000 
0.0213 0.0254 0.0970 
0.0289 0.0192 0.1866 
0.0111 0.0023 0.0776 

0.2652 0.2803 
0.1798 0.2871 
0.2413 0.2647 
0.7634 0.4776 
0.3683 0.5053 
0.4538 0.4875 
0.1502 0.1571 
0.0947 0.2049 
0.3046 0.1168 

0.1767 
0.1811 
0.2249 

Table 2 presents the data for Apparel by region 
for the average of the collection periods and also 
for each of the one year changes for the 
collection periods. Since apparel has bimonthly 
collection the time period estimates can be seen 
to have a periodic movement around the 
averages. There is also some indication that early 
1994 was less stable than the rest of 1994. Graph 
1 presents the error component for Apparel in 

region 1 graphed over time with the mean 
displayed as a reference line. 

Crmph I. 

0 2 4 6 8 1.0 12 

The estimates for the other components for 
Apparel display similar behavior. However the 
relative sizes across regions seem to be different. 
The means will be used at this point for the 
optimization purposes but fin~er investigation 
into the behavior of the lime period estimates in 
relation to the means is needed. 

The hierarchical Bayes estimates for the same 
major groups and time periods are not presented. 
The HB estimates would not consistently 
converge. Due to the unstable nature of these 
estimates they are not fin~er considered but 
different results for different prior values indicate 
that the Gibbs sampler is a flaming disaster. 

5. Conclusions 

The auova estimates of the size of the psu 
components of variance indicates that the item 
component is the smallest component while the 
error component is typically the largest. The reml 
estimator performed well in the sense of 
producing estimates which have some good 
properties. However, the order of the estimates 
appears to disagree with the more traditional 
anova estimates. In order to be sure of the 
usefigness of the eslimates this discrepancy 
needs to be explained. 

6. Future Work 

The major task is to decide if the rend 
es~mates are satisfactory for our p ~ .  This 

130 



inehutes more model checking and diagnostics. 
The ctment work also needs to be extended to 
investigate the change in the components over 
lime. 
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