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1. Introduction 
Balanced half-sample (BHS) variance estimators, 

and resampling estimators generally, are widely used in 
sample surveys because of their simplicity and 
flexibility. Properly applied, they can accommodate 
complex survey designs and complicated estimators 
without explicit derivations of variance formulae for 
different types of estimators. Thoughtless application 
can, however, lead to problems. This paper discusses 
some of the difficulties associated with BHS generally 
and with the shortcut method known as partial balancing, 
which can produce inconsistent variance estimators. 

2. Notation and Model 
The population of units is divided into H strata 

with stratum h containing N h clusters. Cluster (hi) 
contains Mh, units with the total number of units in 

h being M h = ___Ei=Nh, Mhi and the total in the stratum 

M =  ~hM=l M h . Associated with each population being 

unit in the population is a random variable Yhij whose 

population 2,  
Mh, 

finite total is T = 2..,,=~ ~j=lYhu" The 

working model is 

[ ~  h=h ' , i=  "t , j=  j '  

COV M(Yhij, Yh'i'j') l~ohiPhi h h', i= "" j:/: j '  = = t ,  (1) 

otherwise 

A two-stage sample is selected from each stratum 
consisting of n h = 2 sample clusters and a subsample of 
mhi sample units is selected within sample cluster (hi). 
The total number of clusters in the sample is n = ~_~hnh. 
The set of sample clusters from stratum h is denoted by 
s h and the subsample of units within sample cluster (hi) 
by sh/. 

The general estimator of the total T that we will 
consider in this section has the form: 

(2) 
h iEs h 

where Khi is a coefficient that does not depend on the y's 

and Y h i - - " _  ~jEshYhij/mhi. In order for 7 ~ to be model- 

unbiased under (1), we must have ~iE~h Khi -- Mh" Each 

Khi may also depend on the particular sample selected. 
A number of examples of estimators that fall in the class 
defined by (2) were listed in Royall (1986) and Valliant 
(1993). 

The theory here will cover the situation where H 
is large. If, additionally, n/M----> 0 and certain other 
population quantities are bounded as H-:->**, the 

prediction variance varg(7"~-T) is asymptotically 

equivalent to varu (7"~), i.e. , 

varu(T-T)=varu(1") 

= Z h  K~,VhKh = Z h  Z,E,, K;,2,vh, (3) 

where K h = (Khl ..... Kh, .)" and V h = diag(vhi) for 

i=  1 ..... n h, and varu(yh~ ) = ~/[1 +(mhi-1)p , i ] /mhi-  Vhi 

3. A Balanced Half Sample Variance Estimator and 
Limits of its Applicability 

Balanced half-sample (BHS) variance estimators, 
proposed by McCarthy (1969), are often used in 
complex surveys because of their generality and the ease 
with which they can be programmed. Assume that the 
population is stratified, as in section 2, and that a sample 
of n h = 2 primary units is selected from each stratum. A 

set of J half-samples is defined by the indicators 
10 if cluster hi is in half-  sample ¢x 

~hitx - "  if not 

for i=1,2 and (x=l ..... J. Based on the ~hi~, define 

h = 2qhl~ -- 1 

_ ~ 1 if cluster hl is in half - sample a 

L -1 if cluster h2 is in half-  sample a 

Note also that -~")  = 2qh2, , --1. A set of half-samples is 

said to be in full orthogonal balance if 

X~ ,q~  '~) = 0, for all h and (4) 

0 (h h'). (5) 
A minimal set of half-samples satisfying (4) and (5) has 
H+I<_J<_H+4. 

Let 7 ~(~) be the estimator, based on half-sample 

a,  with the same form as the full sample estimator 7 ~. 
One of several choices of BHS variance estimators is 

l x = l  

3.1 Model-based Properties 
Next, we can evaluate the BHS variance 

estimator and its expectation for the two-stage case. 
Entire clusters are assigned to half-samples, i.e., if a 
particular cluster is in half-sample ct, then all units 

subsampled from that cluster are assigned to tx also. The 
half-sample estimator of the total is defned as 

7~(~) = x-" / _ K(~)- .- r.-(~) 2.~h l~ ~hla hl Yhl "{- ~h2otlk h2 Yh2 ] " 
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The form of the half-sample term K~ ) is dictated by the 

form of 1" and is computed as the full sample coefficient 
would be if the sample size were n h =1. The a 

superscript is attached to ~'(") since the value will differ ""hi 
from the full sample value. Although we use a 
superscript a on K~ ), its value is the same for each half- 
sample containing unit hi. The difference between the 
half-sample and full-sample estimators is 

_ .- ~..(,,) 
f(Ot' f -. Z h Z i ~ . s h  (~hiot"hi -- ghi)Yhi* 

Using the definitions of ~h~,, and ~h ), we have 

gh,~ =[1 + ~ ) ] / 2  and "2~ =[1--g~ha)]/2" The difference 

7 ~(~) - 7  ~ can then be written as 

~,(ot) __ ~ --" Zh{ (T (h  Or)* -- fh) '~'~2 ~h(°t) I~yh(°t)} (6)  

~). 
--" ~2( K~I ) ~I Jr" T('(Ot) ~ 2  ) Th "~ Z i ,  Sh Khi ~ i  where ~h2 ' 

and A (~) = k'(~) - w(~) "" yh "'~ hl Yhl "" h2 Yh2 " 

If 7 ~('~) - 7 ~ is squared out and summed over half- 
samples, we obtain a tidy reduction, found in McCarthy 

, (~), 
(1969) and elsewhere, ~ the ghi S and ghi S have a 
special form, but no___jt in general, in particular, suppose 
that 
(HS-1) "'hil~'(°t) = 2Khi 

holds. In that case, 7~h (~)* = 7~h ' "'A(°t)yh -- 2Ayh where 

my h -" KhlYhl - Kh2Yh2 , and 

-- ~h l'X yh " (7) 

Squaring out (7) and summing over an orthogonal set of 
half-samples gives the BHS estimator as 

V B : Z h A 2 h  • 

The expectation under model (1) is then easily 
calculated as 

EM(VB)  "-- ZhZi~shKh2iVhi  Jr" Zh]. .~2h(ghl-  Kh2) 2 , (8) 

which is the asymptotic variance in (3) plus a positive 
term. The positive term looks like a bias squared but is 

present even when ]" is model unbiased. If the class of 
estimators is further restricted so that, in addition to HS- 
1, 
(HS-2) Khi -- K h for all i ~ s h 

holds, t h e n  Ay  h : K h ( Y h l -  Yh2) a n d  EM(Ayh)=O. W i t h  

both HS-1 and HS-2 holding, v B is approximately model 
unbiased. 

Conditions HS-1 and HS-2 substantially limit the 
class of estimators for which BHS is appropriate as an 
estimator of the model variance (3). Because 
~ ,  Kh~ = M h for model unbiasedness, HS-2 implies that 

K h = M h / n  h = M  hi2 .  In other words, the class of 

model-unbiased estimators for which BHS is appropriate 

consists of the singleton T = ~ h  MhZs, ,Yhi/nh " 

3.2  D e s i g n - b a s e d  P r o p e r t i e s  

With some sample designs v n may have desirable 
design based properties when only HS-1 holds, despite 
the conditional (model) bias in (8). Define 7[hi to be the 
selection probability of unit hi in a sample of n h = 2. If 

Khi = Mhi/7[hi, (HS-1) is satisfied when "hie'(~) is 

calculated by substituting 7[h~ = 7[hi~ 2 fo r  7[hi. In that 

case, VB:Zh.s~(Mhifihi/7[h,--~)21[nh(nh--1)]- - - -  and v B is 

design unbiased under with-replacement sampling when 

is design unbiased. When Kni = Mhi/7[hi and the 
estimator is a differentiable function of totals defined by 
(2), Krewski and Rio (1981) showed that v B is design- 
consistent as H---> ,,~ and the sampling of clusters is 
done with replacement. Condition HS-2 is not required 
for these results. When averaged over the design 
distribution, the second, model-related term in (8) turns 
into a design variance component, an example of a more 
general phenomenon pointed out by Smith (1994). 

3.3 E x a m p l e s  
Some examples will show the limitations of BHS 

as an estimator of the model variance. Examples 1-2 

each concern estimators of I" that satisfy the condition 
Zi~sh Khi "- Mh for unbiasedness under (1). 

Example 1. BLU estimator: From Royall (1976) 
the best linear unbiased (BLU) predictor under (1) is 

TBLu = ~_~h.~.,mh,Y--h~ + ~-~h,.,., (Mh~--mh~)" 

[WhYh, + (1- Wh,)~h ]+ ~h,r~ Mh~h where r h is the set of 

nonsample clusters, whi = mhiPhi/(1--phi + mhiPhi), 

~-L h =ZshUhiYhi and uh, =qhJ~-~s, , qhi with 

qh, = mh,/a~i( 1 - Phi + mh, Ph,)" The coefficient in (2) is 

Khi=mhi+[Mh--mh--Zi.~s,(Mhi,--mhi,)W,i.]Uhi+ 

Wh~(Mht--mhi) which depends on the particular units in 

the sample. The half-sample coefficient is simply 
K( a) Mh Therefore, both HS-1 and HS-2 are violated. hi = 

Example 2. Horvitz-Thompson estimator when 
clusters are sampled with probabilities proportional to 
Mhi and an equal probability subsample is selected 

within each sample cluster: Tnr = ~-~h ( Mh/nh)Ziesh Yhi" 

ghi = M h / n  h = M h / 2  and ""hi T('(°t) -" Mh , so that both HS-1 

and HS-2 hold. In the special case of Phi = Ph, O~hi = O~h, 

Mh~ = M h, and mh~ = m h, the BLU predictor in example 1 

also reduces to Tnr. 
In both examples, the half-sample coefficients 

k-(~) 
reduce to "'h/ = Mh" The same reduction occurs for the 

expansion estimator 7~0 = ~h(Mh/mh)~-~i~,~ mhiYhi with 

= z..a'~Sh mhi and the ratio estimator mh 
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A '~--"qI / I " I "" . I  ~ 'W--~I 

T.=~_~,h[Mhl~_,,..hMh,)~_,,..,Mh, Y h , . _  Thus, the half- 

sample method tries to estimate the variance of the BLU 
predictor, the expansion estimator, the ratio estimator, 
and the Horvitz-Thompson estimator all with the same 

set of half-sample 7 ~(~) ' s -  a tactic that is obviously 
incorrect. 

Note that standard survey design practices may 
minimize the effects of violating HS-1 and HS-2. If 
clusters are stratified based on size and the sizes Mh~ 
and allocations mh~ are about the same within a stratum, 

then each of the estimators in the four estimators noted 

above will be approximately equal to ]'nr, the case for 
which BHS works. 

4. Partial Balancing 
Partial balancing is often used in order to reduce 

the number of half-sample estimates that must be 
computed for v s. Though computationally expedient, 
partial balancing leads to an inconsistent variance 
estimator, as will be demonstrated in this section. 
Suppose again that n h = 2 and that strata are assigned to 

groups or superstrata. An attempt may be made to assign 
the same number of strata to each group, but this is not 
essential. In a particular group all the sample clusters 
numbered 1 are associated and assigned as a block to a 
half-sample. Sample clusters numbered 2 are similarly 
treated as a block. Figure 1 illustrates the grouping of 
strata and treatment of clusters as blocks. 

Figure 1. An example of grouping strata and 
treating sample clusters as blocks when partial 

balancing is used. Circled units are assigned as 
a block to a half-sample. 

h Sample clusters 

g=l 

g=2 

If there are g = 1,..., ~ groups of strata, then the 

estimator of the total can be written as 
G 

7~= ~ (irgl + irg2)where Li = ~-,h~oKhiYhi' i=1,2 with Gg 
g=l 

being the set of strata in group g. The estimator of the 
total based on half-sample oc is 

T(°t)--~(~glotT;(l°t)-~-~g2a~?g(2 Or) ) 
g=l 

where ~gia=l if the units numbered i in group g are in the 
k.(,~) 

half-sample and 0 if not, and 7~  ) = .'~-.,h~a, ""hi Yhi with 

K(~) computed as it would be for the fully balanced case hi • 

The difference between the grouped half-sample 
estimator and the full sample estimator is 

1'(~1 - T = ~ (~gl~ Tg~ ) - 7'gl + ~gz,~T~g21- Tg2)" (9) 
g=l 

If ""hie'(~) = 2Khi , i.e. HS-1 holds, then 7~g(/~) = 27'g i and 

g=l 
..(a) 

where ~g = 2~g~ - 1 = -(2~g2a -- 1). With balancing on 

groups, the grouped BHS estimator is 

V G B = E g ( ]/~g I -- ~['g 2 ) 2 • 

The expectation of rob is easily calculated as 

EM(VGB) = E E (  K;lvh, + Kh~Vh2) + 
g h~Gg 

which compares to (8) for the ungrouped case. When 
HS-2 holds, the second term in (10) is zero and the 
grouped BHS estimator is asymptotically model 
unbiased. Note that v aB is design unbiased if only HS-1 
holds (Wolter 1985, sec. 3.6). 

Even if ITS-1 and HS-2 are satisfied, vaB may 

perform erratically when the number of groups. G is not 
large. Krewski (1978), in a related case, noted the large 
variance of a grouped BHS estimator compared to the 
standard variance estimator in stratified simple random 
sampling when the stratified expansion estimator is used. 
Lee (1972, 1973) has studied modifications to partial 
balancing intended to help stabilize the variance of yes, 

but those procedures have somewhat limited 
applicability and have not become part of standard 
practice. Rao and Shao (1993) have also proposed a 
repeatedly grouped balanced half-sample (RGBHS) 
procedure that might be adapted to the partially balanced 
case. The RGBttS method applies to a case where a 
large number of units are selected within a stratum and 
then assigned at random to two groups for variance 
estimation. 

If, as H---)oo, G is fixed, then vos can be 

inconsistent in addition to being unstable. To 
demonstrate this, we extend an argument given by Rao 
and Shao (1993) and Shao (1994) for stratified single- 
stage sampling. Let r/g denote the number of strata 

assigned to group g and suppose that min(r/8 ) --> oo. 
g 

Under standard conditions, 

Z g = ( 7 ~ g , _ 7 ~ 2 ) / ~  d >N(0,1) 
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where Dg =varM(Tg,--Tg2)=Xh~cK2(Vhl + Vh2 ), Since 

VG B Dg 2 x,. z,. 

If D g / ~ g ,  D g , _  converges to a constant COg, it follows 

that 
VGB 2 

varM ( ~ _  T ) . Zoo,z,., (11) 

2 where Z~ is a central chi-square random variable with 1 

degree of freedom. In other words, rather than 
converging to 1 as would be the case for a consistent 
variance estimator, the ratio in (l l) converges to a 
weighted sum of chi-square random variables. Note that 
a result similar to (11) can be obtained if rig--) ~ in 

only some of the strata. The inconsistency of v~n can 

manifest itself by Varu(V~n ) being large and by the 

length of confidence intervals being excessively 
variable, as verified in the simulation reported in section 
6. 

The occurrence in practice of this phenomenon 
may be more frequent than one would at first expect. In 
household surveys, selection of certainty clusters, i.e., 
selection with probability 1, is standard practice. The 
first-stage units in the certainties are usually 
geographically smaller clusters that are explicitly 
stratified or implicitly placed in strata through systematic 
sampling from an ordered list. Frequently, the first-stage 
sample units from a certainty are divided into two groups 
and v~ used for variance estimation. This procedure 

can lead to the inconsistency described above. 

5. Pos t s t ra t i f i ca t i on  
Suppose that the population is divided into design 

strata, indexed by h, and clusters within strata as in 
section 2. Each unit is also a member of a class, or 
poststratum, denoted by c (c = 1 ..... C). Each 
poststratum can cut across design strata, and the set of 
units in poststratum c is denoted by S c. The total 

number of units in poststratum c is 

= ~-~h~.,i~'l ~--~i~=hl t~hOc' where tShO c = 1 if unit hij is in m~ 
S c and 0 if not. Assume that the poststratum sizes M~ 
are known. Consider the following working model 

E M ( Y hij ) = ,ttc. ( h ij ) ~ S~ 
[O~hic h=h',i=i',j=j',(hij)~S~ 

--~ ~hhioOhic h=h"i=i"j#J"(hij)~Sc'(h'i~i')~Sc (12) cov (yh.,Y i ,) 
[2hi~' h=h',i=i',j,~j',(hiJ)~Sc,(h'i'j')~S e 

otherwise 

Let mhi ~. be the number of sample units in sample cluster 
hi that are part of poststratum c and 

Yhic. = Y_~m, Yhu (3h•c/mhic be the sample mean of those 

units. The poststratified estimator is defined as 

L :  
c 

where k c = M,. / lPlc , ~/lc = Zh,i~sh Khic , and 

7"c -" Zh,i~sh Khic'Yhic with Khi c = Khi mhic/mhi . A simple 

calculation shows that Tp., is unbiased under (12). Under 

the conditions in Valliant (1993, Appendix A.1), 
I __  ~ 1 _ _  '~ 

varM(l'p,~-T)=varu(Tp~ ), similar to the non- 

poststratified case in section 2. 
Suppose that strata are grouped as in section 4 

and that the BHS technique is used on the groups. The 

estimator T~. can be written as 7"~ = ~_~g (T~gl + Tcg2 ) with 

7"cgi = ZheG s Khic'Yhic" (i=1,2). Similarly, 

IVlc - Z g ( l~cg 1 + /~c'g2) with A~/gc, = ~-, h ~ O, Kh'c " Let 

KhCa) t,'(a) ~ = "-h~ rnh~/mh~ and let /~!~) = M~/M~)  be a half- 

sample poststratification ratio with 
" (a) " (a) " (~) ]?~a) M c =Zg,hea(~glaMc.gl +~g2aMcg2)and define = 

: ÷(.)  
2g,h~o.(~glaT~ ) + - g 2 . ' c : ) "  ^(.) "(a) M'~g t and T~g t have the 

~,.(a) The half-sample obvious definitions based on --h~ • 

poststratified estimator is i~: ) ~ c  ^Ca) ̂ (~) = R ; T c : .  
When the number of strata H is large and HS-1 
"(a)~,(a) 

holds, R c' c can be expanded around the full sample 

estimates/}~ and ~ to obtain the approximation 

/~a)~.(.)_/~c~ c _= R~ Gg %c / (13) 

e with 
~tc = Tc/Me. After summing (13) over c, squaring, and 

using the orthogonality of the ~) ' s ,  the grouped BHS 
estimator is approximately 

^ 2 ^ t  2 
vo,----Xg~=l(XcRcegc .) =Xg~, (Reg)  

= ., and eg = (eg 1, egc . When (13) with R (RI,. • Rc)' . . . .  )t 

and HS-1 hold, the grouped BHS estimator is 
approximately model unbiased under (12). Note that 
HS-2 is not required for unbiasedness because the mean 
/z~ in model (12) does not depend on the stratum h. 

Unbiasedness notwithstanding, VGB is 
inconsistent here also. As in section 4, suppose that ~ is 
fixed as H---> ~,. Again, let r/g denote the number of 

strata assigned to group g and suppose that 
min(r/~) ---> oo. Since R'eg is a linear combination of 

g 

random variables and each egc is a sum over a large 

number r/g of strata, we have, under appropriate 

conditions, 
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£ g = R e g / ~  a N(0,1) 

where/~g = II,' varM(eg)R. If/~g/Xg,/~g' ---> &,'  then 

VGB 
varM (7~_ T)---> 2 iogz2s , g  (14) 

2 where Zg is a central chi-square random variable with 1 

degree of freedom. Thus, the grouped variance 
estimator is also inconsistent here. 

6. Simulation Results 
To illustrate the problems with the grouped B H S  

variance estimator, we conducted two simulation studies. 
In the first, single-stage cluster sampling was used in 
artificial populations. In the second study, two-stage 
cluster samples were selected from a population derived 
from the U.S. Current Population Survey (CPS) and a 
poststratified estimator used. 

For the first study, two artificial populations 
having H = 40 and H = 160 were generated as follows. 
Constant numbers of clusters per stratum and units per 
cluster were assigned as N h = 100 and Mhi = M h = 10. 

A y variable for each unit in each stratum was generated 
as Yhu =#h  +ehi+2ehU where both ehi and ehu were 

computed as ( x - 6 ) / 1 ~  with x a chi-square random 
variable with 6 degrees of freedom. The stratum means 
/z h were multiples of 10, assigned in blocks of 20 

/z h = 10 for the first 20 strata, #h = 20 for the next 20 

strata, #h = 30 for the next 20 strata (for H = 160), and 
so on. The population with H = 4 0  had a total of 
M = 40,000 units while the H = 160 population had 
160,000 units. In each stratum a sample of n h = 2 was 
selected by simple random sampling without 
replacement and both sample clusters were completely 
enumerated. The estimator of the total used was 

"-- ~_dh Mh~hs with ~hs -- ~-JSh Yhi/nh " ~ is u n b i a s e d  

with respect to both the model and the stratified simple 
random sampling design. When the sampling fraction of 
clusters is small in each stratum (2/100 here), a model- 
unbiased and design-unbiased estimator of variance is 

vB : ~_~hM~(Yhl -- Yh2)2/4, 

which also equals the B H S  estimator when a set of half- 
samples in full orthogonal balance is used. 

For both artificial populations vc8 was computed 
using G = 20 groups and a set of 24 half-samples in full 

orthogonal balance. When H = 40, strata were paired to 
form the groups. Strata 1 and 2 were paired, strata 3 and 
4 were paired and so on. When H = 160, strata 1-8 were 
grouped, strata 9-16, and so on. Note that this type of 
purposive, as opposed to random, grouping reflects what 
is typically done in practice. 

The second study used a population of 10,841 
persons included in the September 1988 CPS. The y 
variable was weekly wages for each person. The study 
population contained 2,826 geographic clusters, each 

composed of about 4 neighboring households. Eight 
poststrata were formed based on age, race, and sex 
(Valliant 1993). A two-stage sample design was used 
with clusters as first-stage units and persons as second- 
stage units. Two sets of 1,000 samples were selected 
with 100 sample clusters in the first set and 200 sample 
clusters in the second. In both sets, clusters were 
selected systematically with probabilities proportional to 
the number of persons in each cluster. Strata were 
created in both cases to have about the same total 
number of households, and n h = 2  sample clusters 
selected in each stratum. In each sample cluster, a 
simple random sample of 4 persons was selected without 
replacement in clusters with Mhi >4; otherwise, the 
cluster was enumerated completely. 

From each sample from the CPS population, the 

poststratified estimate 7~ps, the B H S  variance estimator 

v B based on a set of half-samples in full orthogonal 
balance, and the grouped B H S  estimator were calculated. 

The poststratified estimate 7~p., used g h i  -"  Mh/rt  h SO that 

HS-1 and HS-2 were satisfied. For both sample sizes 
(n=100 and n=200), 25 groups of strata were formed in 
order to compute vcB. For both vB and VGB, the half- 

sample totals 7~ ~) incorporated the factor 4 1 - n h / N h  to 

approximately reflect the effect of a non-negligible fpc. 
Table 1 summarizes results on square root mean 

square errors (rmse's) and standard error estimates 
across 1,000 samples from each of the populations. As 

the ratios, v~/Z/rmse, of average root variance estimate to 
rmse show, neither the grouped B H S  estimator nor the 
fully balanced choices have any serious biases in either 
the artificial or CPS populations. 

Table 1. Empirical root mean square errors (mse) of 
estimators of totals and ratios of average standard error 
estimate s t9 the rmse in 1,000 samples. 
Population rmse v~Z/rmse -~a21rmse 

(000s) 

Artificial T0 

H = 4 0  
H = 1 6 0  
CPS 7"~ 

H = 5 0  
H =100 

5.2 1.002 .997 
9.9 1.051 1.040 

133.0 1.055 1.049 
97.4 .977 1.022 

Ninety percent, 95%, and 99% confidence 
intervals (CI's) based on either v B or v~B covered at 
approximately the desired rates, but more interesting 
properties of CI's are given in Table 2. That table lists 
the averages of the half-widths of 95% CI's, i.e. the 
average over the samples of 1 . 9 6 ~  for each variance 
estimator v. The table also shows the variances of those 
half-widths. Although, for a given simulation, the 
average length is about the same for both variance 
estimators, the variances of the half-widths are vastly 
different. In the (artificial/H=40) case, the variance of 
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the VGB half-widths is 1.9 times the variance of the v s 

half-widths. In the (artificial/H=160) case, the ratio is 
6.2. The ratios of variances for the (CPS/H=50) and 
(CPS/H=100) cases are 2.1 and 4.4. 

Table 2. Empirical results for average half-width length and variance 
of half-width length for 95% confidence intervals over 1,000 samples. 

Population Mean half Var of half-width Ratio of half- 
width 
(000s) 

Artificial v s V GS 

H = 40 10.2 10.2 
H = 160 20.3 20.1 
cPs 
H = 50 275 .1  273.6 
H = 100 186.5 195.1 

(000,000s) width vars 
( v~ /v~  ) 

VB VGB 
1.6 3.0 1.9 
1.6 10.1 6.2 

963.6 2,016.0 2.1 
234.7 1,035.4 4.4 

The relative instability of vcB and its effect on 

confidence interval coverage and length is further 

illustrated by Figure 2. The standard error estimate 

(v = v B or VGB ) for each sample is plotted versus the 
^ 

estimation error T - T  for 500 of the samples for 
(Artificial/H=160) and (CPS/H=100). Reference lines 

drawn at ~=1~-~/1.96. Points that fall between are 

the two lines correspond to samples where the 95% 
confidence interval covered the true value. Points 
outside the reference lines are samples where the 
confidence intervals did not cover. Circles denote vs 

and dots vos. In both panels vs has a more narrow 

range for almost all values of T -  T than does vGs. The 

width of confidence intervals based on vGs is erratic in 

the region where intervals cover T. Near 7 ~ -  T = 0 in 

(CPS/H=100), for example, ~ ranges from about 60 

to 160 (in thousands), but the range of ~ is about 75 

to 120. 

7. Conclusion 
Though balanced half-sampling can be a flexible 

and powerful tool in complex sample surveys, the 
shortcut method of partial balancing should be avoided 
unless a large number of groups can be formed. The 
grouped B H S  variance estimator is at best unstable 
compared to a fully balanced estimator and at worst 
inconsistent. Continuing surveys that use partial 
balancing are likely to observe erratic point estimates of 
variance over time that do not accurately reflect the 
precision of estimated means and totals. 

F igure  2. Standard error estimates ( ~  and x]'VGB ) 

plotted versus estimation errors (7~-T) for 500 

samples from the artficial population (H=160) and 

the CPS population (H= 100). o = ~ ; • = 
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