
EDITING DISCRETE DATA

William E. Winkler*, Bureau of the Census, Washington DC 20233-9100

Keywords: integer programming, set covering,
optimization

ABSTRACT
This paper describes theory, computational

algorithms, and software associated with the
DISCRETE edit system. The prototype DISCRETE
edit system is based on the Fellegi-Holt model (JASA
1976) of editing. A new implicit-edit generation
algorithm replaces an algorithm of Garfinkel,
Kunnathur, and Liepins (Operations Research 1986). A
characterization specific to the edit situation reduces the
amount of information needed in the integer programs
used for error localization. Even with moderate-size
problems, computation during error localization is
reduced by two orders of magnitude.

1. INTRODUCTION
Computer files used for administrative or survey

purposes may contain large numbers of records, some
of which contain logical inconsistencies or incorrect
data. Pritzker, Ogus, and Hansen (1965) describe the
nature of the problem. Errors can arise because
methods of creating records in files are not consistent,
because questions are not understood, or because of
transcription or coding problems. In many situations,
data files are edited using custom software that
incorporate rules developed by subject-matter
specialists. If the specialists are unable to develop the
full logic needed for the edit rules, then the subsequent
edit software is in error. If programmers do not
properly code the rules, then the software would be in
error. Developing software from scratch each time a
data base is redesigned is time-consuming and error-
prone. It is better to have a system that can describe
edit rules in tables that are read and utilized by reusable
software modules. The tables could be more easily
updated and maintained than complex if-then-else rules
in computer code. The software would automatically
check the logical validity of the entire system prior to
the receipt of data during production processing.

Fellegi and Holt (1976), hereafter FH, provided the
theoretical basis of such a system. FH had three goals
that we paraphrase:

1. The data in each record should be made to satisfy
all edits by changing the fewest possible variables
(fields).
2. Imputation rules should derive automatically from

edit rules.
3. When imputation is necessary, it should maintain
the joint distribution of variables.

The key to the FH approach is understanding the
underpinnings of goal 1. Goal 1 is referred as the error
localization problem. In the FH model, a subset of the
edits that can be logically derived from the explicitly
defined edits (called implied or implicit edits) are
needed if the error localization problem is to be solved.
FH provided an inductive, existence-type proof to their
Theorem 1 that demonstrated that is is possible to find
the region in which the error localization problem could
be solved. Their solution, however, did not deal with
many of the practical computational aspects of the
problem which, in the case of discrete data, were
considered by Garfinkel, Kunnathur, and Liepins
(1986), hereafter GKL. Because the error localization
problem is NP-complete (GKL), reducing computation
is the most important aspect in implementing a FH-
based edit system.

This paper provides two main results. The first is an
edit-generation algorithm, called the EG algorithm, that
is an alternative to Algorithm 1 of GKL. Like
Algorithm 1 of GKL the EG algorithm reduces
computation over algorithms based directly on ideas in
FH. We provide a slightly modified version of an
example due to GKL that shows that the EG algorithm
correctly generates all maximal implicit edits whereas
Algorithm 1 of GKL does not. GKL defined maximal
implicit edits and observed that FH had essentially
shown that the set of maximal implicit edits yield a
solution to the error-localization problem. Maximal
implicit edits will be defined later in this paper. The
second result identifies a smaller set of information that
is needed during for error localization that can reduce
computation by two orders of magnitude with moderate
size problems. We observe that the only general
integer programming method for solving the error-
localization problem is branch and bound (Nemhauser
and Wolsey 1988, Garfinkel and Nemhauser 1972) and
that branch-and-bound computation grows faster than an
exponential of the number of edits needed for error
localization.

The outline of this paper is a follows. In the second
section, we give notation and background material that
describe edit generation and error localization. The
third section presents an efficient algorithm for
generating implicit edits and an algorithm that

108

significantly speeds error localization. In the fourth
section, we provide some empirical results from a
computer system (Winkler 1995) that is based on the
new theory and algorithms. The fifth section consists
of discussion and the final section is a summary.

2. NOTATION AND BACKGROUND

A record Y-(Y1 Yn) in a computer file can have n
fields subject to edits. For discrete edits, y takes values
in 1-[Z n, the product space of integers. Each field Yi,
i-1 n, corresponds to a variable that is coded. For
instance, Yl might take values 1-male and 2-female.
Y2 might take values 1-single, 2-divorced, and
3-married. Y3 might correspond to age and take values
0 thru 99 or 1 thru 99. We set Rn equal the set of
values that field yn can assume and D - 1-I R,. For
convenience, we always assume that values in a R, take
values 1 thru 1% where the k n integers are recodes of the
kn value states associated with field y.. An edit is a set
in D. An analyst might specify that being 12 years or
younger is incompatible with being married. Then the
corresponding edit E ~ would consist of points having Y2
- 3, Y3 < 12, and the remaining yi s taking any values.
FH showed that an arbitrary edit E can be expressed as
a union of edits E i of a particular form. Each E i can
be expressed as I'[Ei, where Ein is the set of values
assumed by the nth components of the points Yn in edit
E i. This form of E i is called the normal form. If Ein is
a proper subset of R n, then field n is said to enter edit
E i and edit E i is involved with field n.

We now make two restrictions that can be made
without loss of generality in terms of the theory and
practical application in software. The first is that every
edit E i has at least two entering fields. If an edit E i had
only one entering field, then one field, say j, would
have at least one value-state that would always result in
an error regardless of the values that other fields
assumed. For instance, if the jth field consisted of a
postal code corresponding to a U.S. State, then we
would not consider any such codes that assumed invalid
values. Such single-field edits are best dealt with by
lookup tables associated with pre-edits in the keypunch
software. Thus, while State codes can take any value,
we restrict the State codes passed to the edit system of
this paper to valid ones. These valid State codes may
still be used in multi-field edits because different
combinations of edits may be associated with different
edits in, say, different States of a national agricultural
survey. Our second restriction is that, for each n, R n -
w {E ~ E° I Ein g: R n } where E ° is the original set of
explicit edits defined by analysts. If the union were a
proper subset of R~ for some n, then any record y with
a component Yn in R, but not in the union would

necessarily pass all edits. The first restriction means
that we only consider value-states of fields that enter at
least one edit and the second that there are no value-
states of individual fields that do not enter at least one
field in one edit. In practice, these restrictions could
easily be checked via straightforward combinatorial
routines. This would alleviate tedious, possibly error-
prone checking by analysts. The restrictions facilitate
our theoretical development but do not affect software
development.

The following lemma of FH is the basis of
generating edits in the normal form. For the remainder
of the paper, we will only consider edits in the normal
form because any system of discrete edits can
equivalently be expressed in normal form.

Lemma 1. Let S = {E j, j=l k} be an arbitrary set of
normal form edits such that for some field 1, Ejl is a
proper subset of R~. Let E* be the edit defined by:

E , i = ('3 Eji for i ~ 1 (2.1a)

J

E, 1 - ~ Eji (2.1b)

J

If E , i ;e ~ for i ;~ 1, then E* is an implied edit in the
normal form.

If a record r fails an implied edit E* of the form
given in Lemma 1, then r necessarily fails one the the
edits used in generating E*. The set S is called the
contributing set of edits used in generating edit E*.
Field 1 is called the generating field or node of E*.
Field 1 necessarily enters each edit involved in the
generation procedure of the lemma. If E , 1 = R~ then
edit E* is called essentially new. In the partial ordering
of set inclusion, a normal-form edit is said to be
maximal if it is properly included in no other normal-
form edit. A normal form edit is redundant if it is
properly included in another normal-form edit. The set
of explicit edits plus the set of maximal, normal-form
edits is called the complete set of edits. The set of
original explicit edits is denoted by E ° and the set of
complete edits is denoted by E c. FH had originally
defined the set of complete edits as the explicit edits
plus the set of essentially new, normal-form edits.
GKL noted that the proof of FH for the error-
localization problem holds for the complete set as
defined in this paper. Our definition of complete is the
one due to GKL rather than the one due to FH. A set
of edits is consistent if there is a least one record that
fails no edit.

Using notation similar to GKL, we denote the set of

109

edits generated on node i by (i), those generated on
node i and then node j by (ij), and so on. We do not
claim that node generation is invariant under
permutation; that is (ij) - (ji) or (ijk) - (ikj). GKL
claimed node generation is invariant under permutation.
The set of implicit edits in a node (ijk) will have i, j,
and k as nonentering fields. Additional fields may be
nonentering. (ij) and (ijk) are successor nodes of node
(i). (ij) is the immediate successor of (i). The set of
edits used in generating an implied edit will be called
its generating set. Generating sets are not unique.
Nodes of the form (i) are first-level nodes and implicit
edits in first-level nodes are first-level implicit edits.

FH (Theorem 2), with clarification by GKL, showed
that all maximal normal-form edits can be generated via
the procedure of the lemma. They observed that if one
set of edits is a subset of another and if the generation
on field j yields essentially new edits, then the edit
generated on the larger set is redundant to the one
generated on the smaller set. By similar reasoning, it
is also possible to show that if one normal-form edit
dominates another (in the set inclusion sense), and if
the larger edit replaces the smaller in a generating set
of edits, then any generated edit would necessarily
dominate the edit that would have been obtained if the
the smaller edit had been used.

We can observe that if we were to apply the FH
lemma in a straightforward, brute-force fashion, we
would utimately generate all maximal, normal-form
edits. The intent of this paper is to characterize the
generation process more clearly so that, at each stage,
we use only those edits necessary for maximal, normal-
form edits. If we do not have this characterization,
then as the edit-generation process proceeds, we
generate increasily more redundant edits or make more
unsuccessful attempts because the intersection one of
the fields associated with a set of generating edits is
null. The unneeded extra computation increases at an
exponential rate.

Let f2K be the subset of E c that involves only fields
1, 2, ...,K. The following theorem is the main error
localization result of FH.

Theorem 1 (FH). If yi °, i = 1, 2 K-l , are,
respectively, some possible values of the first K-1
fields, and if these values satisfy all edits in f2K_I, then
there exits some value yK ° such that yi °, i - 1, 2 K,
satisfies all edits in f2 K.

By reasoning inductively, we can fill in yi °, i - 1, 2,
.... K- l , with values yi °, i - K N, such that yi °, i -
1 N, satisfies all edits in E c. Since the ordering is
arbitrary, we can assume that for any subset s and any

set of values yjO, j ~ s, that satisfy edits in E c with
entering fields in s, can be completed to a record that
satisfies all edits in E c. If r - {yi °, i - 1 , N} is a
record that fails a set of edits E and s is the set of
fields that enter the edits in E, then we can find a
minimal cardinality subset Sl of s so that {yjO, j ~ Sl }
can be completed to a record that satisfies all edits. If
we consider weights ci, i - 1 , N, then we can find
the minimal weighted subset Sl of s. We observe that
E c is a set of edits that is sufficient for determining the
minimal number of fields (i.e., the set sl) that must be
imputed to change (complete) an edit-failing record to
one that satisfies all edits. FH (see also GKL)
reformulated the error-localization problem as an
equivalent integer programming problem (array A-aij;
i - 1 K; j - 1 N) in which the rows correspond
to failed edits and the columns correspond to the fields.
Entry aij is 1 if field j enters edit i and is 0 otherwise.
Array A is called the failed-edit array. It is well known
with such integer programming problems (e.g.,
Nemhauser and Wolsey, p. 125) that the upper bound
on computation is proportional to the product 2 K K N.
If we can reduce the number of fields N that must be
considered, then we will reduce computation. If we can
reduce the number K of implicit edits, then we can
reduce computation substantially. For instance, if we
had 5 explicit edits on N - 6 fields, 13 maximal
implicit edits, and only 4 of the maximal implicit edits
were needed for error localization, we would reduce
computation in the error-localization subroutine by as
much as a factor of 1000.

FH and GKL gave examples showing that the set of
maximal implicit edits are needed for error localization
when the error-location problem is translated to the
equivalent integer programming problem. Their
examples each provided similar characterizations. If
explicit edits are the only edits used in creating the
failed edit array, then the resultant solution of fields
could yield changed field values (i.e., a completed
record) that satisfy the set of edits that were failed
originally and failed some of the explicit edits that were
not failed originally. Thus, the implicit edits provide
information about edits that are not failed originally and
are necessary for solving the error-localization problem.
For the remainder of the paper, we will assume that the
set of edits is consistent.

3. T H E O R E T I C A L R E S U L T S
The theoretical results of this section are given in

three parts. In the first subsection, we present results
and an algorithm for generating the set of implicit edits
needed for the complete of set of edits E c. The results
are a hybrid of results from FH, GKL, and this paper
and are intended to replace the implicit edit-generation

110

results of GKL. While the methods of GKL are
computationally superior to those of FH, there is a gap
in the reasoning of GKL that can cause their error-
generation algorithm to fail to generate all maximal
implicit edits in some situations. The error generation
algorithm of this paper retains much of the
computational superiority of the GKL and is closer the
original algorithm of FH. The FH algorithm, while
correct, can necessitate too much computation for
practical use.

In the second part, we provide a characterization that
allows us to reduce the amount of information needed
for error localization. In most situations, computation
is reduced drastically. The third set of results provide
a means of tracking error-localized solutions so that
computation need not be repeated. In large survey
situations such as censuses, the methods can provide a
substantial decrease in computation.
3.1. Implicit Edit Generation

As we observed earlier, if a non-maximal (i.e.,
redundant) edit E i is part of a generating set of edits E g,
then the generated implicit edit will be dominated by
(redundant to) the implicit edit that is generated by E gm

- E g \{Ei}k .){E j} where E j is an edit that dominates E i.

Thus, if we are able to restrict edit-generation to subsets
containing non-redundant (possibly maximal) edits, then
we can reduce computation.

Lemma 2. In generating the complete edits E c, E ° can
be replaced by E °m, where each edit in E °m is maximal
and dominates at least one edit in E °.
Proof. GKL observed that the proof FH Theorem 2
actually shows that the procedure of Lemma 1
generates all maximal implicit edits. If we go through
a straight-forward edit generation, we can monitor
which generated edits, if any, replace explicit edits. E °m
is the set of maximal implicit edits that replace explicit
edits plus the set of explicit edits that are not replaced
or redundant. If we perform the the edit-generation
procedure again with E °m as the starting set of edits, we
generate the E c.

Lemma 2 means that we can replace an original set
of explicit edits E ° with the set E °m. Any generated edit
that replaces an explicit edit will still be called an
explicit edit. Because E °m can generate fewer redundant
edits, computa-tion can be reduced. At present, I have
a straightforward combinatorial routine that identifies
E °m and uses much logic from the main implicit-edit-
generation program. Once E °m is identified, the
program calls the main
implicit-edit-generation algorithm. The set E °m is said
to be equivalent to E ° because it generates the same set

of maximal implicit edits.
stated without proof.

The following lemma is

Lemma 3. Let E i be an edit that is generated by set E g
on node j. Let E i* be an edit that is generated by a
proper subset of E g on node j. Then E ~* dominates E i.

The lemmas and corollary yield the implicit edit-
generation algorithm.

EG Algorithm:
1. Replace, if necessary, the original set of explicit
edits by an equivalent set of maximal explicit edits.
2. Traverse the tree of nodes in all orders.
3. At each node, for each newly implied edit, collect
the set of potentially edit-generating edits to be passed
on to the actual edit-generation step for the successor
node.
4. Within each successor node, for each new implicit
edit in the existing node, systematically generate new,
maximal implicit edits.

There are two main differences between the EG
algorithm and the algorithm of GKL. First, with the
EG algorithm, tree traversal requires all orderings of
nodes of the form (ijk...); with GKL i < j < k. In the
next section, we show that unrestricted orderings are
needed. Second, with Step 3 of the EG algorithm, we
restrict the number of edits passed to the edit-generation
loop; with the GKL algorithm, there is no restriction
and the number of edits can grow at an exponentially
higher rate than with the EG algorithm. Computation
within each node is still exponential in the number of
edits just as it is under the GKL algorithm.
3.2. Error Localization

The overall strategy for reducing computation is to
use a three-step pruning procedure to reduce the amount
of information needed during error localization. Since
the set of fields in the error-localization must be a
subset of the fields in the failing explicit edits, we first
identify the entering fields from the failing explicit
edits. Second, we delineate all failing implicit edits
along with their associated entering fields that are a
subset of the entering fields from the failing explicit
edits. Third, we delete all failing edits that have sets of
entering fields that proper supersets of the sets of
entering fields of other failing edits. Any cover of the
failing edits with a set of entering fields that is a subset
of another necessarily covers the larger failing edit.

Those fields and edits remaining after the pruning are
passed to the error-localization that consists of either a
branch/bound algorithm (code originally written by
Kunnathur) or a greedy algorithm (Nemhauser and
Wolsey 1988, p. 466).

111

4. EMPIRICAL RESULTS
The main example of this section is a modified

version of an example due to GKL (Table 4.1). The
difference is that the basic fields are permuted from the
order given in GKL. The value states of individual
fields go from 1 to 4 rather than 0 to 3. The fields of
GKL are permuted in the following manner: 1 -> 3, 2 -
> 4 , 3 - > 5 , 4 - > 6 , 5 - > 1, a n d 6 - > 2 .

Table 4.1. A Six-Field Five-Edit Example
Explicit Edits

Fields

1 2 3 4 5 6
,,

E I = [I,2] R 2 R3 [I,2] [i] R6

E ~ = R I [3,4] [2] R4 [2]

E 3 = R I R 2 [i} [2,3] R 5

E 4 = R I [i,2] R3 [1,3} R s

E s = [2,3] R2 [2] R 4 R s

[1,2]
[2,3,4]

R6
[i]

Table 4.2 provides the set of edits that are the
maximal, implicit edits generated by software that
follows the EG algorithm of the previous section. All
13 would have been produced using algorithms of GKL
if the fields were left in their original order. Edit 9 at
node (152) of Table 4.2 is not produced by the
algorithm of GKL. Since GKL believed that nodes are
permutation invariant, they did not backtrack which can
require significantly extra computation. Specifically,
under their algorithm, they assume that node (125)
equals (152) and that if (125) exists necessarily it
predecessor node (12) exists. Since (12) does not exist,
there is no way to generate (125) with the GKL
algorithm.

The "Gen by" column actually refers to those original
edits used in generating the implied edits. In actuality,
E 8 is generated from E 6 and E 2 and E 9 is generated
from E 8 and E 4.

5. DISCUSSION
5.1. Tracking Optimal Solutions

In situations such as a large census, many edit-failure
patterns will be repeated numerous times. To save
computation, error-localization solutions could be
tracked and reused. Very little overhead is involved.

Specifically, the tracking procedure is a follows. For
each edit-failing record, the set of failing maximal
implicit edits uniquely determines the error-localization
solution. Rather than repeat computation each time a
edit-failure pattern occurs again, we can create a B-tree
that is indexed by the 0-1 strings associated with edit-
failure patterns. Edit-failure patterns consist of a string
with as many character positions as there are maximal

implicit edits. Each entry in the B-tree will contain an
index that points to the error-localization solution. If a
edit-failure pattern is found in the B-tree, then the
error-localized solution is used. If it is not found, then
the tree is updated. The only overhead is periodically
rebalancing the B-tree to assure that searches occur at
a binary rate. With a large training set based on
previous data, most of the B-tree could be constructed
in advance of production editing.
5.2. Computational Algorithms

Lemma 2 is crucial to the results of section 3.2
because it assures that maximal implicit edits are
generated in an efficient manner. At present, I have no
constructive proof of Lemma 2 that allows an
associated computer procedure. Because the set E °m

exists, I currently produce it by (1) using explicit edits
to generate first level implicit edits, (2) replacing any
explicit edit with a first-level implicit edit that exceeds
it, and (3) repeating steps (1) and (2) until no edits
exceeding explicit edits are produced.
5.3. Software

The software presently consists of FORTRAN driver
routines that were originally developed for a specific
survey system that tested code originally written by
Kunnathur and the new FORTRAN code for edit
generation and error localization. The general
algorithms for edit generation and error localization
compile and run on IBM PCs, Unix Workstations, and
VMS VAXes. To get the overall code running on
different machines, I had to revise several hundred lines
associated with i/o and some data structures. I have not
yet written general i/o modules.
5.4. Further Empirical Tests

The edit-generation software was tested with two sets
of actual survey data. With each, the EG algorithm
generated maximal implicit edits that were not
generated by Algorithm 1 of GKL.
5.5. Computational Speed

With the above test data, edit-generation on a
Sparcstation 20 took 0.1 second. With a larger test
deck of actual survey data having 24 explicit edits and
10 variables, edit generation of 7 maximal implicit edits
needed 0.4 second. Since the edit-generation code is
used to check the logical consistency of a system prior
to receipt of data, speed is not as crucial as it is for
error localization which takes place during production.

Error-localization was evaluated via three different
procedures using a small test deck of 38 edit-failing
records corresponding to the example of section 4. The
execution times were: (1) 0.25 with the pruning
procedure and the greedy algorithm, (2) 0.33 with the
pruning procedure and the branch/bound algorithm, and

112

(3) 0.43 with no pruning and the branch/bound
algorithm. The pruning and greedy algorithm required
less than 0.005 second in procedure (1). Thus, the
error localization with procedure (1) was at least a
factor of 50 faster than with the procedure (3) with no
pruning and the branch/bound algorithm. With larger
data situations, the computational differences should be
much greater. Using the data of the example, the
greedy algorithm always produced the same solution as
the the one produced by the branch/bound algorithm.
Generally, we would expect the greedy algorithm to
produce sub-optimal solutions.

6. SUMMARY
This paper presents theory and algorithms that

facilitate generation of implicit edits under the edit
model of Fellegi and Holt (1976). It gives a much
more precise characterization of error localization that
reduces computation and allows the development of
general Fellegi-Holt edit systems that can be used in
practice.

REFERENCES
Fellegi, I. P. and Holt, D. (1976), "A Systematic

Approach to Automatic Edit and Imputation,"
Journal of the American Statistical
Association, 71, 17-35.

Garfinkel, R. S., Kunnathur, A. S. and Liepins,
G. E., (1986), "Optimal Imputation of
Erroneous Data: Categorical Data, General
Edits," Operations Research, 34, 744-751.

Little, R. A., and Rubin, D. B., (1987),
Statistical Analysis with Missing Data, John

Wiley: New York.
Nemhauser, G. L. and Wolsey, L. A., (1988),

Integer and Combinatorial Optimization, John
Wiley: New York

Pritzker, L., Ogus, J. and Hansen, M. H., (1965)
"Computer Editing Methods--Some Applica-
tions and Results," Bulletin of the Interna-
tional Statistical Institute, Proceedings of the
35th Session, Belgrade, 395-417.

Table 4.2. Implicit Edits

1 2
Fields
3 4 5 6 Node Gen by

m 6

E 7
E 8

E 9
E I0

E~
E 12

E 13

E~4
E15

E 16

E 17

E 18

El

RI
RI

= R 1

= R 1

= R 1

= [1,2]
= R 1

= [1,2] [3,4]

= [1,2] R 2

= [1,2] [1,2]

= R I [1,2] [i]

= [i,2] [3,4] [2] [i,2]

R 2

[1,2] {2]
{3,4] [2] [1,2]
R2
R2
R2
R2
[3,4]

[2] [1,2] [i] [I]
R 4 [i] [i]

R 5 [i]
[2] [i] R s [i]
[2] [i,3] [2] [1,2]
R 3 [3] [2] [2]

[2] [i] R S [1,2]
R3 [2,3] [2] {2]
R 3 [2] R S [2]
[i] R 4 [I] [2,3,4]
R 3 R 4 [1] R 6

R 4 R S [2,3,4]
R S [1,2]

(i) 1,5
(14) 1,4,5
(15) 1,2,5
(152) 1,2,4,5
(2) 2,4
(23) 2,3,4
(25) 1,2,4
(3) 2,3
(35) 1,2,3
(4) 1,3
(4) 1,4
(4) 3,4
(5) 1,2

113

