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ABSTRACT 
This paper describes theory, computational 

algorithms, and software associated with the 
DISCRETE edit system. The prototype DISCRETE 
edit system is based on the Fellegi-Holt model (JASA 
1976) of editing. A new implicit-edit generation 
algorithm replaces an algorithm of Garfinkel, 
Kunnathur, and Liepins (Operations Research 1986). A 
characterization specific to the edit situation reduces the 
amount of information needed in the integer programs 
used for error localization. Even with moderate-size 
problems, computation during error localization is 
reduced by two orders of magnitude. 

1. INTRODUCTION 
Computer files used for administrative or survey 

purposes may contain large numbers of records, some 
of which contain logical inconsistencies or incorrect 
data. Pritzker, Ogus, and Hansen (1965) describe the 
nature of the problem. Errors can arise because 
methods of creating records in files are not consistent, 
because questions are not understood, or because of 
transcription or coding problems. In many situations, 
data files are edited using custom software that 
incorporate rules developed by subject-matter 
specialists. If the specialists are unable to develop the 
full logic needed for the edit rules, then the subsequent 
edit software is in error. If programmers do not 
properly code the rules, then the software would be in 
error. Developing software from scratch each time a 
data base is redesigned is time-consuming and error- 
prone. It is better to have a system that can describe 
edit rules in tables that are read and utilized by reusable 
software modules. The tables could be more easily 
updated and maintained than complex if-then-else rules 
in computer code. The software would automatically 
check the logical validity of the entire system prior to 
the receipt of data during production processing. 

Fellegi and Holt (1976), hereafter FH, provided the 
theoretical basis of such a system. FH had three goals 
that we paraphrase: 

1. The data in each record should be made to satisfy 
all edits by changing the fewest possible variables 
(fields). 
2. Imputation rules should derive automatically from 

edit rules. 
3. When imputation is necessary, it should maintain 
the joint distribution of variables. 

The key to the FH approach is understanding the 
underpinnings of goal 1. Goal 1 is referred as the error 
localization problem. In the FH model, a subset of the 
edits that can be logically derived from the explicitly 
defined edits (called implied or implicit edits) are 
needed if the error localization problem is to be solved. 
FH provided an inductive, existence-type proof to their 
Theorem 1 that demonstrated that is is possible to find 
the region in which the error localization problem could 
be solved. Their solution, however, did not deal with 
many of the practical computational aspects of the 
problem which, in the case of discrete data, were 
considered by Garfinkel, Kunnathur, and Liepins 
(1986), hereafter GKL. Because the error localization 
problem is NP-complete (GKL), reducing computation 
is the most important aspect in implementing a FH- 
based edit system. 

This paper provides two main results. The first is an 
edit-generation algorithm, called the EG algorithm, that 
is an alternative to Algorithm 1 of GKL. Like 
Algorithm 1 of GKL the EG algorithm reduces 
computation over algorithms based directly on ideas in 
FH. We provide a slightly modified version of an 
example due to GKL that shows that the EG algorithm 
correctly generates all maximal implicit edits whereas 
Algorithm 1 of GKL does not. GKL defined maximal 
implicit edits and observed that FH had essentially 
shown that the set of maximal implicit edits yield a 
solution to the error-localization problem. Maximal 
implicit edits will be defined later in this paper. The 
second result identifies a smaller set of information that 
is needed during for error localization that can reduce 
computation by two orders of magnitude with moderate 
size problems. We observe that the only general 
integer programming method for solving the error- 
localization problem is branch and bound (Nemhauser 
and Wolsey 1988, Garfinkel and Nemhauser 1972) and 
that branch-and-bound computation grows faster than an 
exponential of the number of edits needed for error 
localization. 

The outline of this paper is a follows. In the second 
section, we give notation and background material that 
describe edit generation and error localization. The 
third section presents an efficient algorithm for 
generating implicit edits and an algorithm that 
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significantly speeds error localization. In the fourth 
section, we provide some empirical results from a 
computer system (Winkler 1995) that is based on the 
new theory and algorithms. The fifth section consists 
of discussion and the final section is a summary. 

2. NOTATION AND BACKGROUND 

A record Y-(Y1 ..... Yn) in a computer file can have n 
fields subject to edits. For discrete edits, y takes values 
in 1-[ Z n, the product space of integers. Each field Yi, 
i-1 ..... n, corresponds to a variable that is coded. For 
instance, Yl might take values 1-male and 2-female. 
Y2 might take values 1-single, 2-divorced, and 
3-married. Y3 might correspond to age and take values 
0 thru 99 or 1 thru 99. We set Rn equal the set of 
values that field yn can assume and D -  1-I R,. For 
convenience, we always assume that values in a R, take 
values 1 thru 1% where the k n integers are recodes of the 
kn value states associated with field y.. An edit is a set 
in D. An analyst might specify that being 12 years or 
younger is incompatible with being married. Then the 
corresponding edit E ~ would consist of points having Y2 
- 3, Y3 < 12, and the remaining yi s taking any values. 
FH showed that an arbitrary edit E can be expressed as 
a union of edits E i of a particular form. Each E i can 
be expressed as I'[ Ei, where Ein is the set of values 
assumed by the nth components of the points Yn in edit 
E i. This form of E i is called the normal form. If Ein is 
a proper subset of R n, then field n is said to enter edit 
E i and edit E i is involved with field n. 

We now make two restrictions that can be made 
without loss of generality in terms of the theory and 
practical application in software. The first is that every 
edit E i has at least two entering fields. If an edit E i had 
only one entering field, then one field, say j, would 
have at least one value-state that would always result in 
an error regardless of the values that other fields 
assumed. For instance, if the jth field consisted of a 
postal code corresponding to a U.S. State, then we 
would not consider any such codes that assumed invalid 
values. Such single-field edits are best dealt with by 
lookup tables associated with pre-edits in the keypunch 
software. Thus, while State codes can take any value, 
we restrict the State codes passed to the edit system of 
this paper to valid ones. These valid State codes may 
still be used in multi-field edits because different 
combinations of edits may be associated with different 
edits in, say, different States of a national agricultural 
survey. Our second restriction is that, for each n, R n - 
w {E ~ E° I Ein g: R n } where E ° is the original set of 
explicit edits defined by analysts. If the union were a 
proper subset of R~ for some n, then any record y with 
a component Yn in R, but not in the union would 

necessarily pass all edits. The first restriction means 
that we only consider value-states of fields that enter at 
least one edit and the second that there are no value- 
states of individual fields that do not enter at least one 
field in one edit. In practice, these restrictions could 
easily be checked via straightforward combinatorial 
routines. This would alleviate tedious, possibly error- 
prone checking by analysts. The restrictions facilitate 
our theoretical development but do not affect software 
development. 

The following lemma of FH is the basis of 
generating edits in the normal form. For the remainder 
of the paper, we will only consider edits in the normal 
form because any system of discrete edits can 
equivalently be expressed in normal form. 

Lemma 1. Let S = {E j, j=l ..... k} be an arbitrary set of 
normal form edits such that for some field 1, Ejl is a 
proper subset of R~. Let E* be the edit defined by: 

E ,  i = ('3 Eji for i ~ 1 (2.1a) 

J 

E, 1 - ~ Eji (2.1b) 

J 

If E ,  i ;e ~ for i ;~ 1, then E* is an implied edit in the 
normal form. 

If a record r fails an implied edit E* of the form 
given in Lemma 1, then r necessarily fails one the the 
edits used in generating E*. The set S is called the 
contributing set of edits used in generating edit E*. 
Field 1 is called the generating field or node of E*. 
Field 1 necessarily enters each edit involved in the 
generation procedure of the lemma. If E ,  1 = R~ then 
edit E* is called essentially new. In the partial ordering 
of set inclusion, a normal-form edit is said to be 
maximal if it is properly included in no other normal- 
form edit. A normal form edit is redundant if it is 
properly included in another normal-form edit. The set 
of explicit edits plus the set of maximal, normal-form 
edits is called the complete set of edits. The set of 
original explicit edits is denoted by E ° and the set of 
complete edits is denoted by E c. FH had originally 
defined the set of complete edits as the explicit edits 
plus the set of essentially new, normal-form edits. 
GKL noted that the proof of FH for the error- 
localization problem holds for the complete set as 
defined in this paper. Our definition of complete is the 
one due to GKL rather than the one due to FH. A set 
of edits is consistent if there is a least one record that 
fails no edit. 

Using notation similar to GKL, we denote the set of 
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edits generated on node i by (i), those generated on 
node i and then node j by (ij), and so on. We do not 
claim that node generation is invariant under 
permutation; that is (ij) - (ji) or (ijk) - (ikj). GKL 
claimed node generation is invariant under permutation. 
The set of implicit edits in a node (ijk) will have i, j, 
and k as nonentering fields. Additional fields may be 
nonentering. (ij) and (ijk) are successor nodes of node 
(i). (ij) is the immediate successor of (i). The set of 
edits used in generating an implied edit will be called 
its generating set. Generating sets are not unique. 
Nodes of the form (i) are first-level nodes and implicit 
edits in first-level nodes are first-level implicit edits. 

FH (Theorem 2), with clarification by GKL, showed 
that all maximal normal-form edits can be generated via 
the procedure of the lemma. They observed that if one 
set of edits is a subset of another and if the generation 
on field j yields essentially new edits, then the edit 
generated on the larger set is redundant to the one 
generated on the smaller set. By similar reasoning, it 
is also possible to show that if one normal-form edit 
dominates another (in the set inclusion sense), and if 
the larger edit replaces the smaller in a generating set 
of edits, then any generated edit would necessarily 
dominate the edit that would have been obtained if the 
the smaller edit had been used. 

We can observe that if we were to apply the FH 
lemma in a straightforward, brute-force fashion, we 
would utimately generate all maximal, normal-form 
edits. The intent of this paper is to characterize the 
generation process more clearly so that, at each stage, 
we use only those edits necessary for maximal, normal- 
form edits. If we do not have this characterization, 
then as the edit-generation process proceeds, we 
generate increasily more redundant edits or make more 
unsuccessful attempts because the intersection one of 
the fields associated with a set of generating edits is 
null. The unneeded extra computation increases at an 
exponential rate. 

Let f2K be the subset of E c that involves only fields 
1, 2, ...,K. The following theorem is the main error 
localization result of FH. 

Theorem 1 (FH). If yi °, i = 1, 2 . . . . .  K-l ,  are, 
respectively, some possible values of the first K-1 
fields, and if these values satisfy all edits in f2K_I, then 
there exits some value yK ° such that yi °, i - 1, 2 .. . . .  K, 
satisfies all edits in f2 K. 

By reasoning inductively, we can fill in yi °, i - 1, 2, 
.... K- l ,  with values yi °, i - K . . . . .  N, such that yi °, i - 
1 . . . . .  N, satisfies all edits in E c. Since the ordering is 
arbitrary, we can assume that for any subset s and any 

set of values yjO, j ~ s, that satisfy edits in E c with 
entering fields in s, can be completed to a record that 
satisfies all edits in E c. If r - {yi °, i - 1 . . . .  , N} is a 
record that fails a set of edits E and s is the set of 
fields that enter the edits in E, then we can find a 
minimal cardinality subset Sl of s so that {yjO, j ~ Sl } 
can be completed to a record that satisfies all edits. If 
we consider weights ci, i - 1 . . . .  , N, then we can find 
the minimal weighted subset Sl of s. We observe that 
E c is a set of edits that is sufficient for determining the 
minimal number of fields (i.e., the set sl) that must be 
imputed to change (complete) an edit-failing record to 
one that satisfies all edits. FH (see also GKL) 
reformulated the error-localization problem as an 
equivalent integer programming problem (array A-aij; 
i - 1 . . . . .  K; j - 1 . . . . .  N) in which the rows correspond 
to failed edits and the columns correspond to the fields. 
Entry aij is 1 if field j enters edit i and is 0 otherwise. 
Array A is called the failed-edit array. It is well known 
with such integer programming problems (e.g., 
Nemhauser and Wolsey, p. 125) that the upper bound 
on computation is proportional to the product 2 K K N. 
If we can reduce the number of fields N that must be 
considered, then we will reduce computation. If we can 
reduce the number K of implicit edits, then we can 
reduce computation substantially. For instance, if we 
had 5 explicit edits on N - 6 fields, 13 maximal 
implicit edits, and only 4 of the maximal implicit edits 
were needed for error localization, we would reduce 
computation in the error-localization subroutine by as 
much as a factor of 1000. 

FH and GKL gave examples showing that the set of 
maximal implicit edits are needed for error localization 
when the error-location problem is translated to the 
equivalent integer programming problem. Their 
examples each provided similar characterizations. If 
explicit edits are the only edits used in creating the 
failed edit array, then the resultant solution of fields 
could yield changed field values (i.e., a completed 
record) that satisfy the set of edits that were failed 
originally and failed some of the explicit edits that were 
not failed originally. Thus, the implicit edits provide 
information about edits that are not failed originally and 
are necessary for solving the error-localization problem. 
For the remainder of the paper, we will assume that the 
set of edits is consistent. 

3. T H E O R E T I C A L  R E S U L T S  
The theoretical results of this section are given in 

three parts. In the first subsection, we present results 
and an algorithm for generating the set of implicit edits 
needed for the complete of set of edits E c. The results 
are a hybrid of results from FH, GKL, and this paper 
and are intended to replace the implicit edit-generation 
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results of GKL. While the methods of GKL are 
computationally superior to those of FH, there is a gap 
in the reasoning of GKL that can cause their error- 
generation algorithm to fail to generate all maximal 
implicit edits in some situations. The error generation 
algorithm of this paper retains much of the 
computational superiority of the GKL and is closer the 
original algorithm of FH. The FH algorithm, while 
correct, can necessitate too much computation for 
practical use. 

In the second part, we provide a characterization that 
allows us to reduce the amount of information needed 
for error localization. In most situations, computation 
is reduced drastically. The third set of results provide 
a means of tracking error-localized solutions so that 
computation need not be repeated. In large survey 
situations such as censuses, the methods can provide a 
substantial decrease in computation. 
3.1. Implicit Edit Generation 

As we observed earlier, if a non-maximal (i.e., 
redundant) edit E i is part of a generating set of edits E g, 
then the generated implicit edit will be dominated by 
(redundant to) the implicit edit that is generated by E gm 

- E g \{Ei}k . ){E  j} where E j is an edit that dominates E i. 

Thus, if we are able to restrict edit-generation to subsets 
containing non-redundant (possibly maximal) edits, then 
we can reduce computation. 

Lemma 2. In generating the complete edits E c, E ° can 
be replaced by E °m, where each edit in E °m is maximal 
and dominates at least one edit in E °. 
Proof. GKL observed that the proof FH Theorem 2 
actually shows that the procedure of Lemma 1 
generates all maximal implicit edits. If we go through 
a straight-forward edit generation, we can monitor 
which generated edits, if any, replace explicit edits. E °m 
is the set of maximal implicit edits that replace explicit 
edits plus the set of explicit edits that are not replaced 
or redundant. If we perform the the edit-generation 
procedure again with E °m as the starting set of edits, we 
generate the E c. 

Lemma 2 means that we can replace an original set 
of explicit edits E ° with the set E °m. Any generated edit 
that replaces an explicit edit will still be called an 
explicit edit. Because E °m can generate fewer redundant 
edits, computa-tion can be reduced. At present, I have 
a straightforward combinatorial routine that identifies 
E °m and uses much logic from the main implicit-edit- 
generation program. Once E °m is identified, the 
program calls the main 
implicit-edit-generation algorithm. The set E °m is said 
to be equivalent to E ° because it generates the same set 

of maximal implicit edits. 
stated without proof. 

The following lemma is 

Lemma 3. Let E i be an edit that is generated by set E g 
on node j. Let E i* be an edit that is generated by a 
proper subset of E g on node j. Then E ~* dominates E i. 

The lemmas and corollary yield the implicit edit- 
generation algorithm. 

EG Algorithm: 
1. Replace, if necessary, the original set of explicit 
edits by an equivalent set of maximal explicit edits. 
2. Traverse the tree of nodes in all orders. 
3. At each node, for each newly implied edit, collect 
the set of potentially edit-generating edits to be passed 
on to the actual edit-generation step for the successor 
node. 
4. Within each successor node, for each new implicit 
edit in the existing node, systematically generate new, 
maximal implicit edits. 

There are two main differences between the EG 
algorithm and the algorithm of GKL. First, with the 
EG algorithm, tree traversal requires all orderings of 
nodes of the form (ijk...); with GKL i < j < k. In the 
next section, we show that unrestricted orderings are 
needed. Second, with Step 3 of the EG algorithm, we 
restrict the number of edits passed to the edit-generation 
loop; with the GKL algorithm, there is no restriction 
and the number of edits can grow at an exponentially 
higher rate than with the EG algorithm. Computation 
within each node is still exponential in the number of 
edits just as it is under the GKL algorithm. 
3.2. Error Localization 

The overall strategy for reducing computation is to 
use a three-step pruning procedure to reduce the amount 
of information needed during error localization. Since 
the set of fields in the error-localization must be a 
subset of the fields in the failing explicit edits, we first 
identify the entering fields from the failing explicit 
edits. Second, we delineate all failing implicit edits 
along with their associated entering fields that are a 
subset of the entering fields from the failing explicit 
edits. Third, we delete all failing edits that have sets of 
entering fields that proper supersets of the sets of 
entering fields of other failing edits. Any cover of the 
failing edits with a set of entering fields that is a subset 
of another necessarily covers the larger failing edit. 

Those fields and edits remaining after the pruning are 
passed to the error-localization that consists of either a 
branch/bound algorithm (code originally written by 
Kunnathur) or a greedy algorithm (Nemhauser and 
Wolsey 1988, p. 466). 
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4. EMPIRICAL RESULTS 
The main example of this section is a modified 

version of an example due to GKL (Table 4.1). The 
difference is that the basic fields are permuted from the 
order given in GKL. The value states of individual 
fields go from 1 to 4 rather than 0 to 3. The fields of 
GKL are permuted in the following manner: 1 -> 3, 2 - 
> 4 , 3 - > 5 , 4 - > 6 , 5 - >  1, a n d 6 - > 2 .  

Table 4.1. A Six-Field Five-Edit Example 
Explicit Edits 

Fields 

1 2 3 4 5 6 
,, 

E I = [I,2] R 2 R3 [I,2] [i] R6 

E ~ = R I [3,4] [2] R4 [2] 

E 3 = R I R 2 [i} [2,3] R 5 

E 4 = R I [i,2] R3 [1,3} R s 

E s = [2,3] R2 [2] R 4 R s 

[1,2] 
[2,3,4] 

R6 
[i] 

Table 4.2 provides the set of edits that are the 
maximal, implicit edits generated by software that 
follows the EG algorithm of the previous section. All 
13 would have been produced using algorithms of GKL 
if the fields were left in their original order. Edit 9 at 
node (152) of Table 4.2 is not produced by the 
algorithm of GKL. Since GKL believed that nodes are 
permutation invariant, they did not backtrack which can 
require significantly extra computation. Specifically, 
under their algorithm, they assume that node (125) 
equals (152) and that if (125) exists necessarily it 
predecessor node (12) exists. Since (12) does not exist, 
there is no way to generate (125) with the GKL 
algorithm. 

The "Gen by" column actually refers to those original 
edits used in generating the implied edits. In actuality, 
E 8 is generated from E 6 and E 2 and E 9 is generated 
from E 8 and E 4. 

5. DISCUSSION 
5.1. Tracking Optimal Solutions 

In situations such as a large census, many edit-failure 
patterns will be repeated numerous times. To save 
computation, error-localization solutions could be 
tracked and reused. Very little overhead is involved. 

Specifically, the tracking procedure is a follows. For 
each edit-failing record, the set of failing maximal 
implicit edits uniquely determines the error-localization 
solution. Rather than repeat computation each time a 
edit-failure pattern occurs again, we can create a B-tree 
that is indexed by the 0-1 strings associated with edit- 
failure patterns. Edit-failure patterns consist of a string 
with as many character positions as there are maximal 

implicit edits. Each entry in the B-tree will contain an 
index that points to the error-localization solution. If a 
edit-failure pattern is found in the B-tree, then the 
error-localized solution is used. If it is not found, then 
the tree is updated. The only overhead is periodically 
rebalancing the B-tree to assure that searches occur at 
a binary rate. With a large training set based on 
previous data, most of the B-tree could be constructed 
in advance of production editing. 
5.2. Computational Algorithms 

Lemma 2 is crucial to the results of section 3.2 
because it assures that maximal implicit edits are 
generated in an efficient manner. At present, I have no 
constructive proof of Lemma 2 that allows an 
associated computer procedure. Because the set E °m 

exists, I currently produce it by (1) using explicit edits 
to generate first level implicit edits, (2) replacing any 
explicit edit with a first-level implicit edit that exceeds 
it, and (3) repeating steps (1) and (2) until no edits 
exceeding explicit edits are produced. 
5.3. Software 

The software presently consists of FORTRAN driver 
routines that were originally developed for a specific 
survey system that tested code originally written by 
Kunnathur and the new FORTRAN code for edit 
generation and error localization. The general 
algorithms for edit generation and error localization 
compile and run on IBM PCs, Unix Workstations, and 
VMS VAXes. To get the overall code running on 
different machines, I had to revise several hundred lines 
associated with i/o and some data structures. I have not 
yet written general i/o modules. 
5.4. Further Empirical Tests 

The edit-generation software was tested with two sets 
of actual survey data. With each, the EG algorithm 
generated maximal implicit edits that were not 
generated by Algorithm 1 of GKL. 
5.5. Computational Speed 

With the above test data, edit-generation on a 
Sparcstation 20 took 0.1 second. With a larger test 
deck of actual survey data having 24 explicit edits and 
10 variables, edit generation of 7 maximal implicit edits 
needed 0.4 second. Since the edit-generation code is 
used to check the logical consistency of a system prior 
to receipt of data, speed is not as crucial as it is for 
error localization which takes place during production. 

Error-localization was evaluated via three different 
procedures using a small test deck of 38 edit-failing 
records corresponding to the example of section 4. The 
execution times were: (1) 0.25 with the pruning 
procedure and the greedy algorithm, (2) 0.33 with the 
pruning procedure and the branch/bound algorithm, and 
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(3) 0.43 with no pruning and the branch/bound 
algorithm. The pruning and greedy algorithm required 
less than 0.005 second in procedure (1). Thus, the 
error localization with procedure (1) was at least a 
factor of 50 faster than with the procedure (3) with no 
pruning and the branch/bound algorithm. With larger 
data situations, the computational differences should be 
much greater. Using the data of the example, the 
greedy algorithm always produced the same solution as 
the the one produced by the branch/bound algorithm. 
Generally, we would expect the greedy algorithm to 
produce sub-optimal solutions. 

6. SUMMARY 
This paper presents theory and algorithms that 

facilitate generation of implicit edits under the edit 
model of Fellegi and Holt (1976). It gives a much 
more precise characterization of error localization that 
reduces computation and allows the development of 
general Fellegi-Holt edit systems that can be used in 
practice. 
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Table 4.2. Implicit Edits 

1 2 
Fields 
3 4 5 6 Node Gen by 

m 6 

E 7 
E 8 

E 9 
E I0 

E~ 
E 12 

E 13 

E~4 
E15 

E 16 

E 17 

E 18 

El 

RI 
RI 

= R 1 

= R 1 

= R 1 

= [1,2] 
= R 1 

= [1,2] [3,4] 

= [1,2] R 2 

= [1,2] [1,2] 

= R I [1,2] [i] 

= [i,2] [3,4] [2] [i,2] 

R 2 

[1,2] {2] 
{3,4] [2] [1,2] 
R2 
R2 
R2 
R2 
[3,4] 

[2] [1,2] [i] [I] 
R 4 [i] [i] 

R 5 [i] 
[2] [i] R s [i] 
[2] [i,3] [2] [1,2] 
R 3 [3] [2] [2] 

[2] [i] R S [1,2] 
R3 [2,3] [2] {2] 
R 3 [2] R S [2] 
[i] R 4 [I] [2,3,4] 
R 3 R 4 [ 1 ] R 6 

R 4 R S [2,3,4] 
R S [1,2] 

(i) 1,5 
(14) 1,4,5 
(15) 1,2,5 
(152) 1,2,4,5 
(2) 2,4 
(23) 2,3,4 
(25) 1,2,4 
(3) 2,3 
(35) 1,2,3 
(4) 1,3 
(4) 1,4 
(4) 3,4 
(5) 1,2 
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