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1. Introduction 
Survey questions that ask respondents to report 

amounts -- particularly dollar values for financial 
variables such as income and assets, liabilities, 
transfers -- are subject to high rates of item missing 
data. Ouster and Smith, 1995). As an alternative to 
simply accepting high rates of item missing data for 
financial variables, researchers are making increased 
use of special questionnaire formats that are designed 
to collect an interval-scale observation whenever a 
respondent is unable or unwilling to provide an exact 
response to a financial amount question (Heeringa, 
1993). Loosely termed "bracketing questions," these 
new question formats are a type of the more general 
class of unfolding question sequences that are 
developed for improving survey measurements of 
complex characteristics. 

The use of interval scale measures for financial 
items is not new to survey research. The simple 
income questions included in many survey 
questionnaires are often designed to measure amounts 
on an interval scale (e.g., $0-4999, $5000-$14,999, 
etc.). In face-to-face interview situations, "show 
cards" or other visual devices enable respondents to 
map an underlying cardinal-valued response item onto 
an interval or ordinal scale. In surveys where 
cardinal-scale measurement of financial variables is 
necessary or preferred, the University of Michigan 
Survey Research Center (SRC) has historically 
provided its interviewers with a "range card" which 
enabled them to record an interval scale response 
code for financial amount items. Unlike show cards, 
the range card was not designed to be used each time 
the question was asked but served as an interviewer 
aid in cases where it was clear that the respondent 
would not report an actual amount. To avoid 
confusion on the part of the interviewer, a single set 
of fixed range card categories was applied to all 
financial measures regardless of their underlying 
distribution in the population. In large part, the 
frequency and accuracy of range card responses to 
financial amount items was determined by the 
individual interviewer. 

Bracketing question sequences for measuring 
financial variables first appeared in the special wealth 
supplement to the 1984 Panel Study of Income 
Dynamics (PSID, see Curtin, Morgan and Juster, 
1989). Bracketed measurement of 1984 PSID house- 

holds' financial assets served to' 1) standardize the 
process for recovering interval scale observations for 
missing amounts; 2) adapt the interval scales to the 
population distribution for the financial variable of 
interest; and 3) enable the collection of interval scale 
measures in a telephone interview format. The use of 
bracketing question sequences was repeated in the 1989 
and 1993 wealth supplements to the PSID. This paper 
will draw heavily on data and field experience with 
bracketed question items used in the more recent 1992 
Health and Retiremem Survey (HRS). Through the use 
of special question formats the rate of completely 
missing data for HRS asset amount variables is 
significantly reduced; however, the resulting measures 
are a mixture of single valued responses, "bracketed" 
or interval valued responses, and completely missing 
data. 

The special question format that is the direct cause 
of the bracketed data problem has proved to be a very 
useful tool for addressing the serious missing data 
problems that are common for income and asset 
variables. The technique, or some variant of it, is 
already being used on other major surveys of household 
financial characteristics. Now comes the question of 
how to best use these coarsened data in multivariate 
estimation and inference, or alternatively in imputation 
of item missing data for public use data sets. For the 
multivariate problem, Heeringa (1993) initially 
proposed the use of the general location model (Little 
and Rubin, 1987) and a generalized iterative Bayesian 
(GIBS) algorithm to derive estimates of model 
parameters or to perform multiple imputation for the 
bracketed response data. The following paper revises 
and extends that early work to propose a different GIBS 
approach which corrects many of the short-comings of 
the method proposed in the 1993 paper. The revised 
approach incorporates several suggestions offered by 
Little (1993) in his discussion of the earlier approach. 

Including this introduction, the paper is organized in 
four major sections. Section 2 reviews the bracketed 
response data problem using as examples data from 
Wave 1 of the Health and Retirement Survey (HRS). 
Section 3 outlines a coarsened data model (Heitjan and 
Rubin, 1991) for these forms of bracketed response 
data. Section 4 describes a modified version of the 
GIBS data augmentation method (Tanner and Wong, 
1987) that is adapted to this special "coarsened data" 
problem and illustrates how the algorithm can be used 
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to simulate the effects of nonignorable coarsening in 
the response process. 

2. The Data: Bracketed Response Question 
Formats 

Figure 1 illustrates the format of the bracketing 
question sequence for two asset items: equity in a 
business and combined value of IRA and Keogh 
accounts. For these and seven other key asset items, 
if a respondent could not recall or refused to report 
the exact value for the item, the HRS Wave 1 
questionnaire followed up with a short sequence of 
questions designed to "bracket" the underlying 
response value. The question sequences open by 
asking if the household owns the asset (e.g., a busi- 
ness). If the asset is owned, its exact value is 
requested. If the exact value is not reported, the 
questionnaire routes the respondent through a series of 
dichotomous response questions which attempt to 
bracket the value of the asset. Taking the business 
asset and IRA/Keogh account value question 
sequences as examples, the finest level of bracketing 
attainable through the HRS Wave 1 questions is 
shown in Table 1 below. 

Routing the respondent through the nested series of 
bracketing questions does not guarantee that a specific 
bracket will be identified for the unreported amount. 
In some cases, no additional information will be 
obtained. In other cases, the responses will indicate 
that the true value lies in one of three brackets, but 
not precisely which of the three brackets. By 
example, a respondent may indicate that the value of 
his IRA or Keogh account is > =  $25,000 but 
cannot/will not indicate if it is $25,000-$49,999, 
$50,000-$99,999, or $100,000+. 

Table 2 summarizes the HRS Wave 1 data 
problem for each of the nine household assets. The 
left-hand panel of Table 2 identifies the individual 
asset components in question. The central panel, 
labeled "Does item apply?", provides estimates of the 
percentage of HRS Wave 1 sample households 
(unweighted) that reported having each asset (i.e., a 
nonzero amount value is assumed). For example, of 
the n=7608 respondent households included in this 
summary, 23.1% report owning real estate other than 
their personal residence. For households that report 
owning a particular asset or having a particular type 
of debt, the right-hand panel of Table 2 describes the 
distribution of response types: actual value, bracketed 
value, 1 range card value, or missing data value. 

Among financial assets, the percentage of actual 
value reports ranges from 67.4% for stocks and 
mutual funds to 87.4 % for combined value of vehicles 
and other personal property. Depending on the asset, 

the percentage of bracketed responses ranges from 
8.2 % for property to 21.3 % for business value. Even 
though a bracketing question sequence was provided for 
these asset items, from 2.4% to 6.5% of bounded 
response values were recorded as choices from the 
range card. The rates of completely missing data -- 
proportions of cases where no real information on 
bounding values is available -- range from 1.9% of 
responses for the vehicle and property question to 
10.6% for value of bonds. 

The bracketed data problem is potentially compound. 
One aspect of the coarsening has its origin in deliberate 
questionnaire design formats that are intended to 
recover partial information when respondents 
cannot/will not report the desired amount value. In 
addition to this expected coarsening of responses, it 
appears that further undesired coarsening of responses 
may occur in the respondent reports of actual amounts 
that exhibit a high degree of "heaping" at selected 
values (i.e., 1000s, 10,000s, etc.). Only the coarsening 
due to bracketing questions is considered here. 

3. The Coarse Data Model (Heitjan and Rubin, 
1991) 

The coarsened data model (Heitjan and Rubin, 1991) 
provides a framework for approaching the problem of 
estimation for bracketed response question data. The 
general statistical model for coarse data assumes a 
continuous underlying variable, x, and a parameter 
vector, 0, for which estimation and inference are of 
interest" 

X ~ f(x 10) 

Examples from statistical practice might be distributions 
of taxonomic measurements on human heights (Wachter 
and Trussell, 1982) that are assumed to follow a normal 
distribution, post-operative survival times assumed to 
follow an exponential or other gamma distribution 
(Heitjan, 1993), or an income or asset distribution that 
follows a mixture of a lognormal and Pareto 
distributions (Aigner and Goldberger, 1970). 

3.A The Coarsened Data Likelihood 
In addition to the underlying continuous variable of 

interest, each observational unit holds a value for a 
reporting variable, G, which determines the state of 
coarsening with which the individual X's will be 
reported. Conditional on the variable, x, and the 
parameter vector, ,g, G is distributed as" 

G "" h(g  Ix, Y) 

G: X-,Y 

As indicated, the random variable G for each subject 
determines the mapping of the underlying continuous 
variable, x, to the observed variable y. 
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Figure 1 

M5. Do you [ or your (husband/wife/partner) ] own part or all of a business? 

.... i 

! ...... ! 

M6. If you sold (all of) the business(es) and paid off any debts on 
(it/them), how much would you get? 

i I I' t 
co To M7 f i + 

M6a. Would it amount to $50,000 or more? 

I 1. YES I 

M6b.  $ 5 0 0 , 0 0 0  OR m o r e ?  

I ~. No ! 18. oo~,T ~o~C 
I GO TO M7 

M6c. $i0,000 or more? 

T 
M7. Do you [or your (husband/wife/partner)] have any Individual Retirement 

Accounts, that is, IRA or Keogh accounts? 

I~° ~s, I~ ~of ~ ~x~ ~~ ~0 

M8. How much in total is in all those accounts? 

$ I X97. REFUSED I 

+ 

~T 

X98. DON'T KNOW I 

M8a. Would it amount to $25,000 or more? 

i i. YES ( 

+ 
M8b.  $ 5 0 , 0 0 0  o r  m o r e ?  

+ 
M8d.  $ 5 , 0 0 0  o r  m o r e ?  

I I° YEs IIs° No Cis° o~ 
, J 
Go to M9 

M8c. $i00,000 or more? 

I i YEstl s° NoIls° 

Go to M9 

oKI 

M9. How much did you put into (this/these) account(s) last year, 1991? 

$ IN 1991 I X96. NOTHING I 
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Table 1 
Examples of Response Bracket Ranges for HRS Asset Items 2 

$1 - $9,999 

$10,000- $49,999 

$50,000 - $499,999 

$5OO,000 + 

Not applicable 

$1-4,999 

$5,000- $24,999 

$25,000 - $49,999 

$50,000- $99,999 

$100,000 + 

Table  2 
H R S  W a v e  1 Net W o r t h  Componen t s  

Dis t r ibut ion  of  Responses  by Response  Type  (n = 7608 respondent  households)  

i•iii•ii•!!iiiiiiii!iiiiiii•iiiii!•iiii!i!iiiiiiiiiiiiiiiiiii!iiiiiiii•iiiiiiiiii!iii!i!iiiii!ii•iiiiiiiii•iiiiiiiiiiiiiiiiiiii!iiiii!iiiii!iiiiiiiiiii!i!iiii•iiii!iii!iiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiii!•Iiii 
::il iiiii! i:i!iiii iiii::!i:ili::i i : :~:: :: i~i~/~i[i~iiiiiiiii~ii~iii~i~/~i~i~/~ii~i~es~t~mi~/A~pp~?i~/~ :::::::.::i:: :/::/:ii:/:i::iii:: ::::i:::::/: :: i i :: i :: ::iii i iii~i~i~i~i/f~i.~temi~ip~Hesi~T~iiH~eh~iiiii~i~iii~iii~i!~i~/~iii~ii~i~i~iii~i~/~ii~i~i~i~iiii~i~i~ 
!iii~ii~i~ii~:~/i/~i~i~!~ii~/~i~i~!i~i~iiiiiii~?/~!i~/~iii~!~/~i~!~i~/~iiii.iiii!i!!~?~iii~i~i!iii~.i/>ì~?>~i~!~!~ ~::: ii.ii!iiii ......... i ........ :>ii ........ :!i<iiii.iiii_L,~i,! ...... ::i ................. i<! ......................... !<i .............. i,:!:.!L! ................. !<! ............... ~.! ................. ! ........... ~.~ ....... !iii! ......... ~iii::ii::!::iii ............... 

, ::::: , , ,  ,:,:,:,:,:,:,:,:,:,:,:,:,:, ............... ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• .................... .,:,:,:,:,:,:,:,:,:,:,:,:,:,:::,:,:,:,:,:,,:,:,:,:,: 
..... II 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::: i:i:i:i:i:i:]lll,:i:!:i:i:i:i :!:i:i:i:i:i:i:Vo:i:i:i:!:?i:i ::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::: 

A: Real Estate 100% 23.1% 76.3% 0.6% 1759 100% 74.7% 16.2% 5.9% 3.4% 
(not home) 
A: Vehicles,  100% - - - 7608 100% 87.4% 8.2% 2.4% 1.9% 
Pers Prop. 
A: Business 100% 16.1% 83.4% 0.5% 1226 100% 68.2% 21.3% 4.7% 5.8% 
A: IRA, Keogh 100% 37.1% 62.2% 0.7% 2825 100% 73.7% 16.3% 5.2% 4.9% 
A: Stock, 100% 26.5% 72.6% 0.9% 2015 100% 67.4% 21.0% 5.6% 6.0% 
Mutual Funds 
A: Checking,  100% 77.5% 21.5% 1.0% 5895 100% 73.3% 16.4% 5.1% 5.2% 
Savings 
A: CDs,  Sav 100% 24.6% 74.3% 1.1% 1870 100% 70.6% 16.2% 6.4% 6.8% 
Bonds, T-Bills 
A: Bonds 100% 5.9% 93.2% 1.0% 445 100% 69.7% 13.3% 6.5% 10.6% 
A: Other Assets 100% 15.0% 83.9% 1.1% 1143 100% 72.1% 16.3% 5.3% 6.4% 

The mapping of x to y is not a 1:1 
transformation of the underlying variable. For 
example, the complex pattern of coarsening observed 
in the bracketed response data could be summarized 
by a multinomial coarsening variable with three 
categories: 

I X i G i = 0 
yi = ( X u ,  X ~1  G~ = 1 

Missing G~ = 2 

If the realized value of g for subject i is 0, the 
coarsened variable is equal to the actual amount (the 
original intent of the question). For Gt=I ,  the 
amount is not reported but is indicated to lie in a 
specific interval of the full range of x, (XLB , XUB ] • 

Complete missing data results in the case where 
Gi=2. 

Conditional on x and g, the distribution of y is 
degenerate: 

1 y = Y ( X , G )  

r (y lx ,  g) = 0 y , Y ( X , G )  

The conditional distribution of y given x and the 
coarsening model parameters, 3', is obtained by 
integrating g out of the joint distribution of y and g" 

Ix,~) = f r ( y  Ix, g) • h(g  Ix, y) • dg k(y  
F 

A complete likelihood function for the estimation of 
0 that reflects: 1) the coarsened form of x; and 2) the 
stochastic influence of the reporting or coarsening 
function h(glx,~) is: 

Lc(O,¥ l y )  = ff ( 1o) • k ( y l x , ¥ ) d x  
y 
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3.B. Coarsened at Random (CAR), Ignorability 
Heitjan and Rubin (1991) define the data y to be 

coarsened at random (CAR) if for each possible value 
of 7, the conditional density k(y I x,'y) is constant for all 
x that can be mapped into the coarsened variable y. 
For example, a bracketed response variate y is CAR if 
the probability of an interval scale response is uniform 
over the range Ix = (XL, Xu]. If y is CAR, k(ylx,3,) 
can be factored out of the integral expression for 
Lc(0,~'/y) and contributes only a product of scaling 
constants to the likelihood for 0. 

Extending Rubin's (1976) result for the special case 
of the complete missing data problem, Heitjan and 
Rubin (1991) provide Theorem 1 which states that for 
distinct parameter sets 0 and 7, likelihood ratio tests 
and Bayesian inference based on L c are equivalent to 
those based on the simpler form of the likelihood: 

[y) = f r(y Ix,0) • f(x 10) dx Lo(O 
- f .  f (x  10)dx 

where: E = the sample space of x 

Little and Rubin (1987) describe the use of the E-M 
algorithm to estimate the parameters of this grouped 
data likelihood. 

3.C Bracketed Response Measures as a Coarse Data 
Problem 

Focusing on a single variable, the observed 
responses to bracketed response question items can be 
represented as a coarsening, Y:(X,G), of the underlying 
variable x. To simplify this discussion, we will focus 
on a model of coarsening in which the mapping of x-- 
> y  results in 1 of 2 states -- uncoarsened and 
coarsened. 

G~ = 0 tmcoarsened 
Yi = ( XL, xX; ] G i = 1 coatsen~ 

Complete missing data will be treated as a special case 
of coarsening on the range (0, + c0. 

Following the economists' treatment of limited 
dependent variables (Maddala, 1983), zero values will 
be treated as censoring on the interval (- co, 0]. This 
approach was suggested by Little (1993). A similar 
technique was used by Little and Su (1987). 

3.D Is Bracketing CAR? 
To realize the full value of the added information 

gleaned by this bracketed response question method, 
steps must be taken to understand how best to analyze 3 
the coarsened data. One important step in this 
understanding is to learn more about the coarsening 
mechanism. A major question is whether the 
bracketing represents a CAR mechanism. Table 3 

provides indirect support for the hypothesis that the 
bracketing process is not CAR. Table 3 also suggests 
that the completely missing asset data are not missing 
at random (MAR). 

Table 3 focuses on HRS household reports of stock 
and mutual fund value. In the final survey data set, a 
total of 2015 HRS Wave 1 sample households reported 
owning stock or mutual funds. At the initial question, 
1339 respondents reported actual amounts, 112 reported 
a range card interval response, 413 said they did not 
know (DK) the actual amount, and 131 refused (REF) 
to report an exact dollar amount. When asked the 
follow-up bracketing question sequence, 87.9% (363 of 
4i3) of the original DK responses provided interval 
scale responses for the amount. The bracketed follow- 
up questions also elicited an interval scale response 
from 59 of 131 (45.0%) of the original refusers. While 
there are no guarantees concerning the sample 
properties of the subsets of initial DKs and REFs that 
provided bracketing information, Table 3 shows a very 
clear pattern. The observed distribution of the initial 
DKs to the 5 amount brackets is very similar to the 
grouped distribution for households who reported actual 
amounts. In comparison to the actual value reporters 
and the DKs, initial refusals appear to distribute more 
heavily to the middle and upper brackets. 

Furthermore, initial refusals are much more likely to 
provide no information at all. These data suggest that 
the coarsening itself may reflect a mixture of two 
processes, one originating in the lack of information 
(DKs) and the second due to other factors (REFs) that 
are clearly associated with the value of the asset itself. 
Both the propensity to provide a bracketed response and 
the probability of completely missing data appear to 
increase with the value of the asset. 

4. Data Augmentation for Multivariate Data With 
Nonignorable Coarsening 

Heitjan and Rubin (1991) have outlined a theoretical 
framework for estimation and inference based on 
coarsened data. Section 3 attempted to place a real data 
problem encountered in bracketed response survey 
questions into that theoretical framework. If the data 
are CAR or if the model for the coarsening mechanism 
can be identified, models involving these coarsened 
variables can be studied using maximum likelihood or 
generalized iterative Bayesian GIBS) approaches. To fit 
general multivariate models to the coarsened data 
described in Section 2, a ML or GIBS algorithm must 
be able to handle three features of the coarsened data: 

i) zero values in the multivariate vector; 

ii) the interval censoring of individual variable 
values; and 

iii) nonignorable coarsening. 
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Table 3 
HRS Wave 1 Stock and Mutual Funds Amount 

Distribution of Responses to Brackets* 

....................... i ....... liiii ..... i ii! 'iiiiii!i .... ii!iiii ........... iiiiiiiii i ...... iiiiiiii!iii!iiiiiiiii!i!iii ................... iiiS   ii  di  i ,i!ii u a;iiiiii iiiiiiiiiill .......... i iliiiiii ........ i iiiii ...... i iiiiiii iiiiiiiii iii .......... i 

$1 - $4999 

$5K- $24.9K 

$25K- S99.9K 

$100K - $500K 

$500K + 

With Bracket 

Without Bracket 

Total Cases 

298 

455 

362 

199 

25 

1339 

1339 

% 

22.3% 

34.0% 

27.0% 

14.8% 

1.9% 

84 

123 

109 

40 

100% 363 

50 

413 

% 

23.2% 

33.9% 

30.0% 

11.0% 

1.9% 

12 

15 

19 

100% 59 

72 

131 

% 

10.2% 

20.3% 

25.4% 

32.3% 

11.9% 

100% 

*Table does not reflect n = 112 respondents who were permitted to use a range card response to the initial query. 

This section proposes an approach based on the data 
augmentation method of Tanner and Wong (1987) 
which simplifies the estimation problem under 
conditions (i)-(iii) above. 

The recent literature on iterative simulation methods 
describes at least two approaches that could be 
considered for the bracketed response data problem. 
The two approaches are: 1) the data augmentation 
algorithm (Tanner and Wong, 1987) and 2) Monte 
Carlo implementation of the EM algorithm (Wei and 
Tanner, 1990). The two approaches are similar in that 
each uses an iterative, "imputation-based" algorithm 
to evaluate the posterior distribution of the model 
parameters, 0. Under the probability model for the 
complete data and a suitable choice of a prior for 0, 
data augmentation calculates the full posterior 
distribution. The Monte Carlo EM approach is 
designed to solve for the mode of the posterior, 
although Wei and Tanner (1987) describe a "poor 
man's data augmentation" extension of the Monte 
Carlo EM algorithm which can be used to estimate 
the shape of the complete posterior distribution. 

4.A Data Augmentation for the Bracketed 
Response Data 

Adopting a Bayesian approach to the estimation 

and inference problem, the objective is to compute the 
posterior distribution, P(OlY), where y is the observed, 
coarsened data. The complexity of the distribution for 
the observed data rules out a simple, direct evaluation 
of this posterior using conventional Bayes' methods. 
However, as shown in Tanner and Wong (1987), it is 
possible to augment the observed data with additional 
data that allows the problem to be solved by an iterative 
algorithm. 

For the bracketed response data problem considered 
in this paper, the required augmentation is a subvector 

of regression imputations, W, with one element for 

each element of X that is coarsened in the 

measurement process. The regression imputations are 
constrained to reflect the information on the potential 
range of x, (XL, Xtj], provided by the observed data 
vector, Y. 

Figure 2 is a schematic illustration of the structure 
and relationship of the underlying, observed and 
augmented data records. 
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Figure 2 
Example Data Structures 

Underlying Data 

Observed Data 

Augmented Data 
(m draws) 

x -  

Coarsened Measurement 

r - t x , ,  

Data Augmentation 

(I) . . . ,  Wj(1 ) w = l:X,, '), ,..., x ,  l 
• (, 

• • 

tx,, w?>,..., 1 

To explain the application of the data augmentation 
algorithm to the bracketed response data problem, we 
need the following expression for the posterior density 
of 0" 

p(0  ly) = fj,(0 Iw, y)p(wly)dw 
where" 

p(wly) = foP(Wl~,y)p(~ ly)d~ 

is the posterior predictive density for the augmented 
data, w, given the observed data, y, and a set of 
parameters, 4) in O which define the regression of w 
on y. 

Substituting this expression for p(w[y) and 
changing the order of integration, Tanner and Wong 
provide the following integral equation for p(0 [Y): 

p (Oly)  -- foK(O,~)g(~) d~, 

where K(O, gp) -- f wp(O Iw, y)p(w l~,y)dw 
The iterative data augmentation algorithm outlined by 
Tanner and Wong applies the method of successive 
substitution to evaluate this integral equation for the 
desired posterior p(01y). At each iteration, the 
integral K(0,~b) is evaluated by Monte Carlo methods 
using multiple draws (imputations) from the posterior 
predictive distribution, p(wl~,y). 

The proposed data augmentation algorithm has 
three basic steps: 

DA Step 1" Generate a sample value of 4) using the 
current iteration's version of the posterior density for 
0, p°)(01y). Assume that the distribution of the 
underlying data, x, is multivariate log- 

normal, f ( l n ( x ) ; 0 ) ~  N(u,I:) .  Given this multi- 

variate normal distribution for the natural log trans- 
formation of the underlying income or asset measures, 
the conjugate prior for 0 = (/~,~) is a normal-inverse 
Wishart distribution (Schaffer, 1991). The diffuse, 
multivariate Jeffreys prior for O = (# ,  ~) is: 

I 

When the complete data likelihood for In(x) is 

multivariate normal, both the conjugate and Jeffreys 
prior yield a posterior, p(0ly), that is also normal- 
inverse Wishart. For example, the complete data 
posterior for the improper Jeffreys prior is: 

p(u l Z,y) = N(~,n -~ Z) 

p(Z-~ ly) = W(n- 1,(nS) -~) 

The generation of samples (required in Step 1 of the 
DA algorithm) from the normal-inverse Wishart 
posterior is straightforward (Schaffer, 1991). 

DA Step 2: Generate a sample of size m of the 
desired augmented data from the predictive posterior 
density p(wly), {w (1), W(2),...,w(m)}. The imputation 
step of the DA algorithm requires random draws from 
the posterior predictive density: 

p(w  [Y) = foP(W}~,y)p(~ lY) d~ 

Given the current draw of 0 from the normal-inverse 
Wishart density, p(i)(0ly), the predictive posterior 
distribution p(wl 0°>,y) is a multivariate normal linear 
regression of w on y. (The regression parameters, ~b, 
in the integral equation are a reparameterization of 0, 
the multivariate mean vector and variance/covariance 
matrix). Schaffer(1991) outlines an algorithm based on 
the sweep operator which efficiently computes the 
parameters of this predictive distribution for each 
pattern of missingness (i.e., coarsening) in the 
multivariate data vector. The algorithm also includes a 
procedure for generating the w vector for each pattern 
from the appropriate multivariate predictive distribution. 

Schaffer's algorithm is written for the special case 
of estimation and imputation for item missing data. 
Section II.B showed that the observed responses to the 
bracketing-type questions produce two classes of data. 
For reports of actual amounts, the value of the observed 
coarsened variable, y, is the value of the underlying 
variable, x. The complementary set of responses are 
bracketed responses where y is just an indicator of the 
censoring interval for x, say Ix. One special case of the 
latter is complete item missing data. Here we will 
simply interpret complete item missing data as interval 
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censoring of In(x) on the range (0, + ~ ) ,  and the 
modified DA algorithm described below will treat 
complete missing data accordingly. As noted in 
Section 3.B, zero values in the multivariate response 
vector will be treated as censoring on the interval (- 
~ ,  0] for the multivariate lognormal data. 

Clearly, interval censored observations included in 
the multivariate data vector contain information that 
should be used in the generation of the imputations, 
W. 

Two approaches can be considered for building the 
interval censoring information into the draws of w. 
One approach is to use rejection sampling methods to 
discard any random draws which do not meet the 
range constraints imposed by the interval censoring 
indicators contained in the observed y. This would be 
very inefficient for the multivariate problem 
considered here. The second approach is to sample 
from a restricted (truncated) form of the posterior 
distribution, p*(°(wl0(°,y) for which the draws are 
forced to meet the range constraints. Since 
p*°)(w[0(i),y) is a multivariate normal distribution, 
Devroye (1986) presents a simple algorithm for such 
a restricted sampling based on draws of random 
uniform deviates. [See also Gelfand et al. (1990).] 

DA Step 3: Update p~(0 l y) by taking the simple 
average of p(0lw(k),y) over the m sample values of 
w(k). 

n,l 

p(~+~)(O ly) = m-1~_, p(O l w~*),y). 
k=l 

The DA algorithm iterates through this 3-step 
sequence until the desired level of convergence is 
attained. 

4.B The Monte Carlo EM Algorithm 
A second imputation-based approach to estimation 

and inference for the coarsened, bracketed response 
data is the Monte Carlo EM (MCEM) procedure 
proposed by Wei and Tanner (1991). As with the 
standard E-M algorithm, Wei and Tanner's algorithm 
uses an iterative sequence of expectation (E) and 
maximization (M) steps to compute the maximizer, 
0max, of the posterior likelihood, p(01y). 

The E step of the ith iteration of the conventional 
EM algorithm involves solving the integral equation 
for the expectation of the log posterior, ln(p(0 [y,w)): 

Q~(0,0(0) = fwm(t,(Oly,w))p(wlO<O,y)dw 

The MCEM algorithm uses the Monte Carlo method 
to approximate this expectation. Using the current 
value of 0m~x as the working value, 0 (i), a sample of m 

observations is generated from p(wl 0(i),y). The current 
approximation to the expectation of the log posterior is 
then computed by the simple averaging (mixing): 

nl 

Qm(0,0c0) = ! ~  log(p(0 IwCX),y)). 
m j=l 

The M-step of each iteration involves solving for 

0(0,~ by maximizing this mixture of log posteriors 
with respect to 0. For multi-dimensional maximization 
problems, Wei and Tanner suggest the use of conjugate 
gradient or quasi-Newton methods. 

Like the DA algorithm, at each iteration the MCEM 
procedure augments the observed data with multiple 
imputations for each coarsened observation y=I'~. 
Unlike the DA algorithm where the imputed w's are 
drawn from p0)(w }y,O °)) with 0 o) a random draw from 
p0)(0[y), MCEM's draws are made from the predictive 
distribution, p(i)(wly,0max). MCEM does not calculate 
the full posterior p(01y), only its maximizer. The 
proposed procedures for handling the interval censored 
measurement in a modified DA algorithm and non- 
ignorable coarsening (Section 4.C) could also be used 
in conjunction with the MCEM algorithm. 

4.C Modifying the DA Algorithm to Model/Simulate 
Nonignorable Coarsening 

The posterior likelihood, p(01y), defined in Section 
4.A assumes that the coarsening mechanism is 
ignorable. Data presented in Section 2.D suggest that 
the bracketed response data may be subject to 
nonignorable coarsening. Therefore, for purposes of 
simulation and sensitivity analyses it is useful to extend 
the DA procedure to explicitly incorporate a model of 
nonignorable coarsening. For such simulations and 
sensitivity analyses, it is assumed that the parameters of 
the coarsening model are specified and not of analytic 
interest. (In actuality, the nature of the data from the 
full bracketed response question sequence would permit 
simultaneous estimation of the coarsening model 
parameters.) 

Returning to the theoretical development of the DA 
algorithm, the complete integral equation for the 
posterior when the coarsening mechanism is not 
ignorable could be written as: 

pC(0 ly) = fK¢(O,~)g(~)d~, 
where: 

- fo f~(olw,  y,g)p(wl ~p,y,g)h(g)dwd8 xo(0,,) 
Based on this formulation, K¢(0,4~) is the expectation of 
the K(0,4~[g) over the stochastic coarsening variate, g. 
Extending without detailed proof the theoretical 
development of DA presented by Tanner and Wong, 
coarsened data requires a DA imputation step which 
samples not from the predictive distribution p(w [y) but 
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from the joint predictive distribution p(w,g l Y). The 
"imputation" step (Step 2 in Section 4.A) consists of 
drawing a sample of m vector pairs (W,G) . 

The sampling importance resampling (SIR) 
procedure described by Rubin(1988) provides a 
practical approach for generating samples from this 
complex posterior. Consider decomposing the 
complex joint distribution: 

p(w ,g  lY)  = p(wly)p(g Iw, y) 

As in Step 2 of Section 4.A, generate a sample of 
M > > m values of w from p(w l Y). For each draw 
compute the ratio: 

i(wY ) -_ p (w ,g  ly) _ p ( g  lw, y) .  
p(wly) 

Next, select a sample of m from the M with 
probability proportionate to size (PPS) where the 
measure of size for each of the j = 1 ..... M original 
draws is the importance ratio, i(wJ) . 

For a simple model of univariate coarsening with 
dichotomous outcomes, G=O (not coarsened) and 
G=  1 (coarsened), the m draws are needed only for 
observations where the observed variate is the 
coarsened interval response, Y=Ix. The only 
acceptable pairs are of the form (w=W, g = l ) .  
Therefore the importance ratio that is used to 
determine the final selection probability for the m 
draws is: 

i (w J) = p ( g :  1 [w = W,y = Y). 

e.g., i(wJ) = ~() '0  +)'1 W) for the univariate case. 

Step 3 of the modified DA algorithm is identical to 
that described in Section 4.A. 

5. Summary 
Bracketed response question sequences have 

proved to be highly effective in reducing the amount 
of complete item missing data for survey measures of 
financial variables; however, analysis of these data 
such as multivariate modeling remains complicated 
due to the coarsened nature of the observations. 
Heeringa(1993) suggested the use of newly developed 
GIBS methods to develop a multiply imputed data set 
that would enable analysts to conduct multivariate 
analysis of these data using conventional software 
systems. The present paper has shifted the emphasis 
from the multiple imputation of item missing data and 
interval censored responses, to estimation of 
parameters under a complete model for the coarsened, 
bracketed response data. The GIBS data 
augmentation approach proposed in Section 5 
addresses the major shortcomings of the general- 
location model method presented in the 1993 paper. 

It should be noted that the data augmentation 
algorithm described here lends itself readily to 
performing multiple imputations for coarsened and 
completely missing responses. Upon convergence of 
the algorithm, multiple imputations are obtained by 
making m draws from p(w [ y,0~n'~). 

Presently, programming of the modified data 
augmentation algorithm is underway using the S-Plus 
system supplemented with subroutines written in lower 
level languages (Fortran and C +). Upon completion of 
the programming steps, a large scale simulation study 
is planned. The simulation study will serve not only to 
test the accuracy and speed of the program but will 
examine the performance of the method over a range of 
data set properties including: 1) degree of coarsening 
(including complete missing data); 2) variance- 
covariance of the underlying data; 3) sample size; and 
4) various stochastic models for the coarsening 
mechanism. 
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Notes 
~The bracketed value category includes cases in which, due to 
nonresponse or uncertainty, the boundary values for the amount may 
span two or three of the actual bracket ranges for the item question. 
2The number of brackets and the associated dollar amounts vary to 
reflect differences in the properties of the underlying asset 
distribution. 
3We could also add "...how to impute..." to this sentence. 
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