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Summary. Consider the accelerated sequential 
procedure of Hall (1983). Second order 
asymptotic expressions are obtained for the. 
expectation of well behaved functions of the 
stopping variable. The wide applicability of the 
results is demonstrated by working out several 
point and interval estimation problems. 

1. Introduction. Consider the problem of 
estimating some unknown parameter/~ e R in the 
presence of a nuisance parameter 0 > 0 using 
sequential procedures. Compared with other 
procedures, the purely sequential procedure due 
to Anscombe (1953), Robbins (1959) and Chow 
and Robbins (1965) has greater efficiency. Yet, it 
is rather slow and can be costly to perform, e.g., 
see Hall (1983) who proposed an accelerated 
sequential procedure to reduce, by an arbitrary 
predetermined factor, the number of sampling 
operations needed to construct a fixed width 
confidence interval for the mean of a normal 
population with unknown variance. Hall (1983) 
obtained asymptotic expressions for the mean and 
variance of the stopping variable. 

An accelerated sequential procedure, which 
can be used for a wider class of populations, is 
developed in the sequel along the lines of Hall 
(1983), and Hamdy and Son (1991), and Son and 
Hamdy (1990). A second order asymptotic 
expression is then obtained for the expectation of 
an arbitrary, but well behaved (see Assumption 1 
below), function h of the stopping variable. Such 
an expression can be useful in both point and 
interval estimation situations as illustrated in 
section 4. Further, as a by-product, a similar 
expression is obtained for the purely sequential 
procedure. 

Our approach takes advantage of the fact 
that the optimal sample sizes arising in most 
sequential estimation problems have the following 
structure 
n" = (1) 

where n" is the optimal sample size, ,~ > 0 is a 
known constant and g > 0 is a given function of 
the unknown nuisance parameter 0. Obviously 
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n---~oo as A---,oo. However, we make the 
following assumptions. 
Assumption 1. Let h be continously 
differentiable function such that 
Sup h " " (n ) = O (h " " (A) ) as m - - . o ~  
n~m 
Assumption 2. Let g a continonsly differentiable 

bijective function such that as m --+ co 

d 3 (n f (n) )  I < co, where f = g-1 Sup I 3 
. n > r e x  dn 

Let ~ and ~n be the usual estimators of t~ 
and 0, respectively, based on a random sample of 
fixed size n > 2. 

Assumption 3. There exists a sequence W1, W2, 
... of positive i.i.d, random variables each having 
mean 0 and variance r 2 such that E(W14) < oo, 
where 

n 

= ana -- E w,. ,n>Z 
i-I 

Assumption i is made to facilitate the 
calculation of the order of the remainder terms in 
the Taylor series expansions in sequel while 
Assumption 2 enables us to explicitly def'me the 
inverse function of g and evaluate the order of the 
remainder term in eqn (7) in the appendix. 
Asumption 3 is made following Woodroofe (1977). 
Nevertheless, it is shown in section 4 that these 
assumptions hold true in many applications. 

Regarding notation, we use f ", f " ,  f " "  to 
denote the first, second, and third derivatives, 
respectively, of a given function f. 
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2. A Purely Sequential Procedur. Since n 
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depends on the unknown nuisance parameter 0,  
we resort to the following purely sequential 
procedure to estimate n *. 

Assume that an initial sample of size m > 2 
has been taken from the underlying distribution. 
Then, we def'me the following stopping rule 

m 

M = inf {n > m "n >_Ag (Wn)}. (2) 

Once M is determined, we proceed to estimate the 
unknown parameter/~. 

The main result concerning the one-by-one 
sequential procedure (2) is given in Theorem 1 
whose proof is based on the following lemma. 

Lemma 1. Let M be defined by (2). Then, under 
Assumpti0fis 2-3, we have 

2 

(/) e ( M -  n .)2 = _ _  + o (a). 
n 

( i i ) E  I r a -  n"  13=0('~2) 
2 

(iii)E(M)=n°._~~~_~I_~)f dn ° .dZn *dO e 

2a/ dn " } 
" 7 + o  

where v is given by Woodroofe (1977), see also 
Finster (1983). 

Theorem 1. Let M be defined by (2). Then, 
under Assumptions 1-3, we have 

E{h(M)} = h(n*)-  fh'(n*) + o(h'(A)), 
where 

- I • 

Both Lemma 1 and Theorem 1 are proved in the 
appendix. 

R e m a r k  1. In the above expression, f represents 
the cost of not knowing the nuisance parameter 0 
under the purely sequential set-up, see Simons 
(1968) for more details. 

3.  A n  Accelerated Sequential Procedure. Hall 
(1983) suggested accelerating purely sequential 
proceAures by a predetermined factor ~tE(0, 1). 

We adopt his idea and outline the procedure in 
three phases. In the pilot phase an initial sample 
of size m > 2 is taken to start the sequential phase, 
where observations are taken one-by-one, to 
estimate only a fraction 7 of n" according to the 
following rule 
N1 = inf {n >m "n >' lAg (Wn)}. (3) 

The f'mal sample size is then define by 

w 

N = max { N ,  [,~g (WNI)] + 1}, (4) 
where [x] denotes the largest integer less than or 
equal to x. In the accelerated phase, the 
remaining observations (N- N1) are taken in one 
last bulk and we then proceed to estimate/~ using 
the N observations. 

The following lemma is an immediate 
consequence of Theorem 1. 

Lemma 2. Let N1 be def'med by (3). Then, under 
Assumptions 1- 3, we have as A - .  oo 
E {h('7 "1N1)} = h(n*).if-1 fh . (n  °) + o(h.0~)) ' 

The main result concerning the accelerated 
sequential procedure def'med by (3) and (4) is 
given in Theorem 2 which is proved in the 
appendix. 

Theorem 2. Let N be defined by (4). Then, under 
Assumptions 1-3, we have as A --* oo 
E{h(N)} h(n') " ") " -- -nh (n + o(h (~) ) ,  
where 

r 2 . h "  (n.) n 1 
rl = 2"?n" h'(n dO 2 "'2" 

Remark 2. As in Remark 1, the above expression 
for r/ represents the cost of not knowing the 
nuisance parameter 0 if we accelerate the purely 
sequential procedure by a predetermined 
coefficient "r e (0, 1). 

4 Appliciations. It is shown here, by way of 
examples, 
how to use theorem 2 to solve several point and 

interval estimation problems. For point 
estimation, the optimal sample size is that value of 
n which .minimizes the risk Rn (A) = E {Ln (A)}, 
where Ln(A) is the following squared error loss 
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plus a linear cost function 

Ln (A )=A ( £ -  U) 2 + n, 

and A > 0 is a known constant. 
As for interval estimation, given a e (0,1), the 

optimal sample size is that value of n for which 
Pr {p • In } >_ 1 - oq where In is a confidence 
interval of fixed width d > 0. 

In each case, we begin by f'mding the optimal 
sample size n ". Since n" depends on the unknown 
nuisance paramete 0, we resort to the accelerated 
sequential procedure def'med by (3) and (4) to 
estimate n ". Once N is determined, we propose 

A 

~'N as a point estimator for /~ and compute the 
accelerated sequential risk, E {LN (A)}, the 
optimal risk, Rn (A), and the regret, 
w(A ) = E {LN(A ) } " Rn (A ). 

On the other hand, we propose 1N as a confidence 
interval for/~ and compute Pr {~ 6 IN }. 

Example 1. An Exponential Model. 
Let Y1,Y2,... be a sequence of i.i.d, random 

variables having the following exponential 
distribution 
f 0'"/~, 0) = (1/0)e-(r-~,)/0, y >/~, 
where the location parameter/~ E R and the scale 
parameter 0 > 0 are assumed unknown. 

For a random sample of fixed size n(> 2) , 
the usual estimators of/~ and 0 are given by 

n 

£ = min Yi, On = ( n - 1 )  4 E (Yi-/~),  
l<i<_n i -1  

respectively. Now, let W x , . . . , W n . x  be i.kd. 
random variables from f (-" 0, 0). Then, it 
follows from Lemma 6 in Lombard and 
Swanepoel (1978) that the distribution of 
{Wn, n > 2} is identical to that of On, n > 2}, 
which is equivalent to Assumption 3. Further, it is 
easily verified that r 2 --- 0 a. 

Point estimation of/~. Since the risk is given by 
Rn (/l ) = 2 AO 2 I n  2 + n. 

The optimal sample size takes the form in (1) with 
= (4/1) x/s and g(O) = 0 2/3. Now, the aex.elerateA 

sequential risk is given by 

z {LN (A)} = (~/2)(n')3 E (N -z) + Z (N). 

Hence, using Theorem 2 with h (N) = N and 
h (N) = N a, we obtain 

E ( N )  = n - - ~/2 + o 0 ) ,  

and 

1 1 . 1 / 2 }  + o(Aa); E (N "l) - (n ' )  "2 + 2 ( n ' ) ' 3 [ ~  - 

3 • 
RI(A) = T ~  ; 
respectively, so that 

3 • 2 ,,t. 1 o(1) 
{LN(A)} = T "  + 7 + 

Therefore, the regret is given by 
2 ./-x 

w(A) = ~ + o (1), which is bounded and 

independent of A. 

Interval estimation of p. Consider a fixed width 
confidence interval for /~ of the form 
I~ = ( ~ -  d , ~ .  The associated confidence 
coefficient is given by 
Pr { P E IN} = 1-e('na/°k 
Let a =-In(a) ,  since we require the confidence 
coefficient to be at least ( 1 - a )  then the optimal 
sample size would be as in (1) with ~, = a / d  and 
g(O) = 0. Further, since 
I~ { ~ e I N }  = 1 - E  {e('Na/~}, 
then, using Theorem 2 with h(N) = e ('Nd/~, we 
obtain 

aa  [ a - A + 2 1  ?r {u~b¢} = (l-~)- --v + o(d), 
n :?.A 

where r/= (a-~+2)/(2-/) represents the cost of not 
knowing the nuisance parameter 0. 

Example 2. An Intra-Class Model. 
Let Y1,Y2 .... be a sequence of Li.d. random 

variables such that Y,.=/~+ei, where the e i  are 
normally distributed with E (ei)=0 and 
cov(e~,  ej ) = , , z  i = j ,  

= p o Z  i ¢=i. 

The parameters/~ E R, 0 2 > 0 and p E (-1, 0)  are 
assumed unknown. 

For a random sample of fked size n (>__2), the 
usual estimator of/~ is 
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/I 
^ -1 v . = n  E v , .  

i-I 
Further, it can be shown that 

A 
- N(p, 0/n + p o2), where 0=o2(1- p). On the 

other hand, the usual estimator of 0 is given by 
It  

~,, = O-:)-x ~ (y,. ~)~ 
i=l 

Consider the following Helmert's transformation 

Zi = ~ ' i ( /+1)  Yi-[Y+'+I , i= l, . . .  n -1. 

Define Wt.=ZP. Then, I, Vi--OXPO). It is easily 
verified that Assumption 3 hold true with 
r 2 =282. 

Point estimation of p. The risk here is given by 
R~(A) =AO/n  +Apo  2 +n. 

Thus, the optimal sample size is of the form in (1) 
with A=A I/2 and g(O)=O ~/2. Further, since the 
accelerated sequential risk is given by 
E {LN (A)} = (n ")2 E (N q) + A po 2 + E (N), 
then, using Theorem 2 with h(N)=N and 
h (N)= N "x, we obtain 

e (N) = , , ' .  [.,/4..r'..,/2] + o(i), 

and 

E(N-1) __ (tl')-I + (/,1")-2 (~,-1- 1/2) + o(A'I); 

R~,(A) = 2n"  + A pa 2' 
respectively, so that 
E {Ljv (A)} = 2n" + A +oF + 1/2,,/"1 + o(1). 

Hence, the regret is given by 
,o(A) = O/2).r ~ + o(1) .  

Interval estimation of/~. Consider a f'Lxed width 
confidence interval for ~ of the form 
In - ( ~ - d , t ~  + d). Let ~(.) denote the standard 
normal distribution function and set 
a-~ ' t (1-a /2) .  Thus, the confidence coefficient is 
given by 
er  ~ t ~ }  = 2 ,+(dA/O/ , ,  + ~) - I 

> 2 + (a / v /O /n ) .  1. 

Since the confidence coefficient is required to be 
at least (l-a), then the optimal sample size would 
be as in (1) with A=a2/d 2 and g(O)=0. Now, it can 
be shown that 
Pr{pEIN} = 2E{~ ( d /  ~/O/N + po "z) }- I 

>_ z~ { ¢,(d /,/O/N) }- ~. 

Hence, using Theorem 2 with 
h (iV) = <~ (d /~ /O/N) .  We obtain 

Pr{,E//v} > (I-cx)- a ~ a )  (a  2 -7+ 5} 
- n 2"t 

+ O (d2). 
Here the cost of not knowing the nuisance 
parameter 0 is given by 
17 = (a2-7  + 5)/(27,/). 

Remark 3. The results of Theorems (1) and (2) 
still hold true for l~ERk ,k>2 .  However, the 
initial sample size should now be m > k + 1. 

Example 3. A Fixed Size Confidence Region For 
The Regression Parameters. 

Consider the model Yn = Xn ~ + en, where 
Y, is an observed n×l vector, Xn is a known n xp 
matrix of rank p,/3 is a p xl  vector of unknown 
regression parameters and ~n is an nxl  random 
vector distributed as Nn (0, 0 I), where I is the n xn 
identity matrix and 0>0 is unknown. We assume 
that n > p > 2. 

Let G r denote the transpose of a matrix G. 
Then, the usual estimators of/~ and 0 are given by 

~ - (x~x,,)-~ x~ r,,, 
and 

^ T A ~ = (n -p)-~ (g~ -x~ B~) (r~ -x~ B~), 

respectively. Further, let Z1 , . . . ,Zs~ ,  be an 
orthogonal basis for the error space, i.e., the null 
space of Xn r. It is easily verified that Assumption 
3 holds true with IV,. = Z 2 -- 0 ~1) and r 2 = 2 02. 

I n  order to study the large sample properties 
of Bn, it is usually assumed that the matrix 
(n-1 X r Xn) converges to a positive definite matrix 
as n ---, oo. Thus, we use (n-t Xrn Xn) as the weight 
matrix in the following fixed size ellipsoidal 
confidence region for 3 
B~ = {b ~RP. (B~ - b)r(n q X~X,,)(B'~ -b) ___d2}. 
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The confidence coeffident associated with Bn is 
given by 
Pr {~ e Bn } = F (n d2 /O), 

where F(.) is the distribution function of a chi- 
square random variable with p degrees of 
freedom. Let a e be such that F(ap) = 1-a. Then, 
since we require the confidence coefficient to be 
at least (1-a), the optimal sample size would be as 
in (1) with A=at,/d 2 andg(0)=0. 

We start with the sample size m >_p + 1 and 
use the accelerated sequential procedure def'med 
b~ (3) and (4) to determine Y. Then, we compute 
B N and propose the confidence region BN for//. 
It can be shown that 
Pr{~ EBN} = E {F(Nd210)}. 

Hence, using Theorem 2 with h (N)=F(Nd2/O), 
we obtain 

around n" and take the e ~ a t i o n  to get 
E {Mf(MI~) ~=eE(M) +g(e)f "(g(~)E(M-n ") + 

2 ~  I, dO 1 {g(O)f"(g(O))+2f "(g(~)} +E(R2OT) 

where use has been made of (i), and (ii) is 
established upon substituting (7) into (6), 
rearranging terms and observing that 

R 2 = (M-n ")3 ((v / V  "" 3f" 
4 

where v is a random variable lies between M and 
n ". It follows that, 

E (R2)= ~l.l~ "2 E I M-n*l Sup3~x[n f " ' (n )  

+ 3 f " ( n / ~  

• d 3 (n f (n))  ="~'-1 )C2E IM-n  I 3 Sup 
3! 3 n >rex dn 

= o(1) by (iii) of Lemma 1 and assumption 2. 

ap-"l + 6-p ) 

The cost of not knowing the nuisance parameter 0 . 
in this case is given by rt = (al,- 7 + 6 -p)  / (2 7).  

Appendix 
Proof of Lemma 1. Consider (2) and expand WM 
around 9 in a Taylor series and carry out some 
algebraic manipulations to obtain 
E (M- n ")2 = ~2 g- (0)2 E (WM" 0) 2 + E (R x), 
where R1 is the remainder term. It is easily 
verified that E (R1) is of order o(A). Further, 
using the asymptotic normality of W,, n > 2, the 
results of Anscombe (1952) and the uniform 
inte_grability of (WM-0) 2, we obtain 
E ( W  M -0) 2 --- ?.2/n" + O(~'1), 
and (i) is established. To prove (ii) let f denote 
the inverse function of g. Then, recalling (2), we 
can write 
S M = M f (M/A) - DM, (5) 
where D M represents the excess under the 
boundary at the stopping time. Using the results 
of Woodroofe (1977) we have that E(DM)=V 
while Wald's lemma yields E (SM)- 0 E (M). 
Thus, taking the expectation of both sides of (5), 
we get 
0 E (M) = E {M f (MI~) }-  i,,. (6) 
Let R2 denote the remainder term in a Taylor 
series second order expansion of {Mf(M/A)} 

Proof of Theorem 1. Let R s denote the remainder 
term in a Taylor series second order expansion of 
h(M) around n ". It can be shown that E(R3) is of 
order o(h'(A)). Thus, taking the expectation of 
the above mentioned expansion and using Lemma 
1, and assumption i establishes the theorem. 

Proof of Theorem 2. Recalling (3) and (4) we can 
write 
N1 = YAg( WN, ) + VN, , (8) 
where VN~ is a random variable representing the 
excess over the boundary after the termination of 
the sequential phase, and 
N = A g(WNt) + UN,, (9) 
where UNI is asymptotically uniform over (0,1) as 
in Hall (1983). Substituting (8) into (9) we obtain 
N = y-1 NI-Y "I VNt + UN~ 
Hence, using Taylor's Theorem, we get 
h(N)=h(Y "t NI)+(UN:Y "t VN~)h'(Y "t N1)+R4, 
where R4 is the remainder term. Now, similar 
arguments to those used to evaluate E (R 2) can be 
used to show that E(R5) is of order o(h(A)). 
Further, it follows from Theorem 2.1 in 
Woodroofe (1977) that NI and VNI are 
asymptotically independent. Furthermore, going 
along the lines of Hamdy (1988), it can be shown 
that N I and UN~ are asymptotically uncorrelated. 
Moreover, 
E{h ' (Y  "1N1)} = h 'O*)  + o (h"(A)). 
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Hence, using Lemma 2, we get 
E ( h ( N ) ) = h ( n ' ) - { Y q { f + E ( V N  )}-0.5}h "(n *) 
+o(h 
The theorem is established upon proving that 

E,(VNI ) --- ~ + o(1). (10) 
n dO 

To this end recall (8) and write 
SN1 = N 1 f " ( N 1 -  VN,)/A'I). (11) 
But, similar to (5), we have 
SN: = N1 f(N1/AT) - DNv (12) 
Therefore, from (11) and (12), we obtain 
DN , = N1 { f  (N1/A "I)'f (N1/A"I" VN , /A~) } , 
by Taylor Theorem. 
= + R5, 
where R 5 is the remainder term. But, 
E { N Lf " (N1/A "I) } = "l n " f " (n * /A) + o (A). 

Hence, upon observing that E (R5) is of order 
o(1), we get 
v = (n ' /A) f"  (n 'IA)E ( VNI ) + 0 (1), 
observe also that f g (0)= 0 taking the derivative of 
both sides with respect to 0 we get 
f " g (e)g'(e)= 1. 
Therefore, 
f ' g  (O) - 1/g" (O), 
from which (10) follows. This completes the 
proof. 
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