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Abstract: Time series modeling is applied to Current Population Survey (CPS) unemployment rate data for 39 
states and the District of Columbia to reduce the effects of large fluctuations in sampling error. A signal-plus- 
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characteristics of the estimated signal components, potential efficiency gains over the survey estimator, and the 
importance of accounting for the sample design. 
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1. Introduction 
To reduce variability arising from small sample 

sizes, the Bureau of Labor Statistics (BLS) has adopted 
a time series approach to survey estimation (Bell and 
Hillmer 1990, Pfeffermann 1992, Scott and Smith 
1974). This approach is used to produce labor force 
estimates from the Current Population Survey (CPS) in 
39 states and the District of Columbia (hereafter 
referred to as 40 states). In a previous paper, (Evans, 
Tiller, and Zimmerman 1993), models were developed 
for the employment-to-population ratio. This paper 
presents results from modeling the unemployment rate. 

The remainder of this paper is organized as follows: 
Section 2 discusses the state CPS sample design 
relevant to time series modeling; Section 3 describes 
the time series component models; Section 4 explains 
the estimation process; Section 5 presents the results 
for the 40 unemployment models; and Section 6 
provides the conclusions. 

2. CPS Sample 
The Current Population Survey (CPS) is a monthly 

household survey that is designed to provide monthly 
unemployment rate estimates for the nation, 11 states, 
New York City, and Los Angeles with a prespecified 
level of reliability. For the remaining 40 states, the 
reliability requirements are eight percent coefficient of 
variation on an annual average unemployment rate of 6 
percent. However, the coefficient of variation for the 
monthly unemployment rate in the 40 states averages 
14 percent, an unacceptably high level of variability. 
Time series models have been developed to reduce this 
variability. 

In modeling the CPS data, it is important to account 
for two characteristics in the sample design. First, the 
reliability of the CPS estimator changes over time due 
to sample redesigns, sample size changes, and 
variations in the labor force. Secondly, strong 
autocorrelations in the sampling error arise from the 
use of a 4-8-4 rotation scheme (Census 1978) and the 
periodic replacement of households. Failure to account 
for the strong autocorrelation in the sampling error and 
the changing reliability in the CPS estimator is likely 
to result in confounding the noise with the signal. 

3. Time Series Component Modeling 
In this paper, a model for the unemployment rate is 

developed for each of the 40 states. The CPS sample 
estimate at time t, y( t ) ,  is represented as the sum of 
two independent processes 

y(t)  =O(t )+e( t )  

0(t) =the population value of unemployment rate 
e(t) =sampling error. 

The population values are represented by a strucuaal 
time series model with explanatory variables (Harvey 
1989) 

0( t )= X ( t ) ~ ( t ) + T ( t ) + S ( t ) + I ( t ) + O ( t )  

The 1 x k vector g (t) contains known explanatory 
variables while the k x 1 vector J3(t) contains the 
random coefficients associated with them. T(t)  
represents a trend component, S(t)  a seasonal 
component, I (t) an irregular component, and O (t) an 
outlier component. Each of these components include 
one or more normally distributed, mutually 
independent white noise disturbances, 

where j indexes the individual components. The 
stochastic properties of these components are 
determined by the variances of these disturbances. 

These components are grouped into either a signal, 
F(t)or noise, rl(t), component 

l"(t) = X (t)f3(t) + T(t)  + S (t) 

rl(t) = e(t) + l ( t )  +O(t)  
The signal component represents all of the variation in 
the sample values related to systematic movements in 
the true values. The noise component is the sum of 
sampling error, purely random variation unaccounted 
for by other components, and unusually large transitory 
fluctuations or outliers. While sampling error is the 
most important component of the noise, the other two 
components represent highly transitory variation that 
obscure the normal behavior of the series and, thus, 
removed from the signal. 
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The regression coefficients are specified to follow a 
random walk process, 

~ (t) = ~ (t-1)+~t~ o) 

E[~)p (t)~)~ (t) ]= Diag(c~ , .... o ). 

The trend component is represented by a locally 
smooth linear trend with a random level, T(t), slope, 
R(t), and allows for the possibility of shocks to the 
trend level white noise disturbance term, ~)T(t). 

These shocks are innovation outliers that cause 
permanent shifts in the level of the trend. 

T(t) = T(t - 1) + R ( t -  1) + ~)T (t)" 

R ( t )  = R ( t - 1 )  + ~) R 

m 

~)T(t) "= k~lS k~k +~T (t) 

= I l i f t = t k  

{k  (t) [0 i f t #  tk 

The seasonal component is the sum of up to six 
stochastic trigonometric terms associated with the 12- 
month frequency and its five harmonics 

6 
S(t)= ESj( t )  

j=l 

where each frequency component is represented by a 
pair of variables, each containing white noise 
disturbances. 

Sj( t )  = cos(co j )S j ( t -  1) + sin(co j )  S*( t -  1) + ~) 
j s , j  

S;( t )  = -sin(o~j)Sj  ( t -1 )  + cos(co j ) S ;  ( t -1 )  + ~)s, j 

o~j = 2rtp~ 1 p= {12,6,4,3,2.4,2} 

The white noise disturbances are assumed to have a 
common variance, so that the change in the seasonal 
pattern depends upon a single parameter. 

The irregular component is specified as consisting of 
a single white noise disturbance, 

l ( t )= ~)t(t). 

A zero variance for this component means it can be 
dropped from the model. 

Sampling error is the difference between the 
population value, 0(t), and the estimate, y(t), 

e(t) = O(t ) -  y(t) 

where e(0 has the following properties: 

2 E[e(t)] = O, Var[e(t)] = o,Ct) 

Pe (l) = E(e(t)e(t - l))/f f  ~Ct) . 

To capture the autocorrelated and heteroscedastic 
structure of e(t), we express it in multiplicative form as 

e(t)=T(t)e*(t)  

with 7(t) representing the heteroscedastic part of the 
CPS, 

T(t) = O-~, 10e( 0 . 

The autocorrelated part of the CPS, e*(0, can be 
approximated by an ARMA process, 

e *(t) ~ ARMA(~ ,0 "), 
where the 0" and ~ parameters are derived from the 
sampling error lag correlations. 

An outlier represents a transitory shift in the level of 
the observed series, 

O ( t ) = E ~ i ( t )  
J 

{10 , , where ~ (t) - 
otherwise. 

The coefficient, )~y, is the change in the level of the 
series at time j. 

4. F~fimafion 
The parameters of the noise component are derived 

directly from design-based variance-covariance 
information. The state CPS variance estimates are 
obtained through the method of generalized variance 
functions (Census 1978). State level autocorrelations 
of the sampling error are based on research conducted 
by Dempster and Hwang (1990) that used a variance 
component model to compute autocorrelations for the 
sampling error. After the unobserved signal and noise 
components are put into the state-space form, the 
unknown parameters of the variance components of the 
signal are estimated by maximum likelihood using the 
Kalman filter (Harvey 1989). Given these parameter 
values, the filter calculates the expected value of the 
signal and the noise components at each point of time 
conditional on the observed data up to the given time 
point. As more data become available, previous 
estimates are updated by a process called smoothing 
(Maybeck 1979). For more details, see Tiller (1989). 

5. Results 
Using the basic model structure described above, 

models were fit to the CPS unemployment rate series 
(CPSRT) for each of the 40 states, covering the period 
January 1976 to December 1991. With the exception 
of Oklahoma, each state model has only one 
explanatory variable in the regression component---the 
state claims rate (CLR). The claims rate is def'med as 
the ratio of the state unemployment insurance claims to 
payroll employment from the state Current 
Employment Statistics survey. In addition to CLR in 
the regression component, Oklahoma's unemployment 
rate model uses an unemployment insurance exhaustee 
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rate (EXHRT), defined as the ratio of the unemployed 
exhaustees to the CES employment. The general form 
of the model is given by, 

CPSRT(t) = ~1 (t)CLR(t) +~z (t)EXHRT (t) 

+Trend(t) + Seasonal(t) + Noise(t). 

Once estimated, these models were subjected to 
diagnostic testing. In a well-specified model, the 
standardized one-step-aheM prediction errors should 
behave approximately as white noise. An acceptable 
model exhibits no serious departures from the white 
noise properties. Once satisfactory results were 
obtained, further decisions were based on goodness of 
fit and on subject matter knowledge. 

Regression 
Table 5.1 presents the specifications for each of the 

unemployment rate models. The standard deviations 
of the white noise disturbances to the coefficients 
(column two of Table 5.1) are small, resulting in either 
fixed or nearly fixed values for 18 of the models. For 
the remaining models, the substantial variation in the 
model's coefficient indicates an unstable relationship 
between the CPS rate and CLR. 

Trend component 
Taken together, the regression coefficients and the 

trend reflect long-run differences in the behavior of the 
CPSRT and CLR. Nationally, there have been large 
changes in the long-term relationship between the 
CPSRT and CLR. From the 1970's through 1980's, the 
proportion of unemployed job losers collecting 
unemployment insurance benefits dropped from 75% to 
50%. This has reduced the sensitivity of the claims 
rate to recessions. In most states, the trend component 
corrects for this bias in the claims rate by increasing 
during the recessions and decreasing during 
expansions. 

There have also been some major level shifts in the 
CPS rate in selected states that are not explained by 
either the CLR variable or the normal evolution of the 
trend component. These level shifts are modeled as 
innovation outliers in the trend level. 

We identified level shifts using the following 
procedure. First, we fit an AR/MA model directly to 
the CPS data, using SCA time series analysis software, 
and used an automatic outlier detection procedure to 
detect potential level shifts. If a level shift in the CPS 
is identified, we examine the prediction errors from the 
model for lack-of-fit at the point at which the level 
shift occurred. Then, we add an intervention variable 
to the model to estimate the statistical significance and 
magnitude of the shift. If the shift is found to be 
highly significant, we add it to the model. We 
identified level shifts in 5 states. 

Seasonal component 
Since the CLR is itself highly seasonal, the seasonal 

component does not account for all of the seasonal 
variation in the signal. Like the trend, the seasonal 
component reflects seasonality in CPS not reflected in 
CLR. In most states, the divergence in the seasonal 
pattern of the two series is particularly reflected in the 
large positive value of the seasonal component in June. 
This is primarily due to the entry of summer 
vacationing students into the labor force. Since this 
group is not usually eligible for UI benefits, the 
seasonal component adjusts CLR by increasing the 
total rate in June. 

In 23 states, the variance of the seasonal component 
is effectively zero, resulting in a fixed seasonal pattern. 
The remaining states have some variation in their 
seasonal patterns over time. Table 5.1 shows the 
frequency composition of the seasonal component 
under the column labeled seasonal frequencies. Rarely 
was it necessary to include all of the 6 frequencies. 

Irregular component 
The variance of the irregular component is zero in 

35 of the states: thus, the irregular component is 
identically zero and can be dropped from these models. 
The remaining 5 states have significant random 
variation present which is not accounted for by the 
other components. 

Outliers 
Outliers were identified based on normalized one- 

step-ahead prediction errors that exceeded, in absolute 
value, three times their standard error. The outliers 
identified in each model are shown in the last column. 
They correspond to unusually large one-time deviations 
of the CPS from its usual range of fluctuation. We 
have not been able to associate any of these outliers 
with unusual economic events. Therefore, they have 
been treated as part of the noise. The maximum 
number of outliers identified per state never exceeds 
four. Out of 192 observations, this does not appear to 
be an excessive number. 

Relative importance of components 
To measure the empirical importance of each of the 

components, we decompose the sum of squares of the 
change in the sample estimates into its component 
parts, where change is computed by taking 1-, 3-, and 
12-month differences. These differences play an 
important role in data analysis. Month-to-month 
change in a reported labor force statistic receives 
considerable public attention as an indicator of current 
labor market conditions, as does over-the-year change 
as an indicator of long-run developments. Also, it is 
common to report over-the-quarter change. 

In Table 5.2, each component sum of squares is 
expressed in relative form by dividing by the total sum 
of squares. The table entries show the proportion of 
the sum of squares of the sample estimates over various 
time spans which can be attributed to changes in its 
signal and noise components. The proportional 
contributions in the table sum to 100, except for 
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rounding error. The column headed SIG refers to the 
sum of the regression (REG), trend (TRD), and 
seasonal (SEA) components. The CPS column label 
refers to sampling error, and the IRR column refers to 
the irregular component. 

First, consider the importance of sampling error. On 
average, it accounts for 71% of the monthly variation 
in CPSRT, which is not surprising given the standard 
deviation of the sampling error is large relative to the 
average change in the sample estimate. It also 
accounts for 55% of the yearly variation, illustrating 
the importance of the strong autocorrelation induced by 
the sample design. 

Next, we examine the relative importance of the 
regression, trend, and seasonal components in 
explaining the total variation in the signal. Although 
most of the monthly, seasonal, and long-run variation 
in the estimate of the signal is accounted for by the 
claims rate (CLR roughly accounts for an average 53% 
of the monthly variation in the signal, 72% of the 
variation over a 3-month span, and for 68% over a 12- 
month span), the trend and seasonal components of the 
model do show significant contributions. The trend 
component plays an important role in adjusting the 
claims rate for long-run drift away from the total rate. 

Efficiency gains 
To obtain a reliability measure for the models, we 

use the error covariance matrices obtained from the 
Kalman Filter (K~ and Kalman Smoother (KS). 
These error measures represent uncertainty resulting 
from stochastic variation in the population and the 
inability to observe the state variables directly. These 
measures do not account for uncertainty in estimating 
the variance parameters of the signal and the 
parameters of the sampling error model. Therefore, 
the model reliability measures must be considered 
expe "nmental. 

With the above caveats in mind, we estimated the 
potential gains from using the model-based 
unemployment estimator over the survey-baseA 
estimator. The efficiency gain is measured as the ratio 
of the standard deviation of the estimated signal to the 
standard deviation of the sample estimate. The median 
of this ratio for all states was calculated for the KF and 
KS estimates for monthly values over two time periods, 
1980-91 and 1991. We use the period 1980-91, 
dropping early years because the large transient 
induced by the initialization of the KF results in Ix)or 
estimates of the covariance matrices in the early part of 
the sample. We select 1991, the last year in our 
sample as an indicator of model reliability in real time. 
The results are presented in the table below. The 
smoother is more efficient than the forward filter, 
particularly in the middle of the series. However, the 
forward filter represents the most efficient estimator 
available at the time the estimates are first made and 
reported. Clearly, the gains from modeling are largest 
in historical time when the smoother can be used. The 
ratio of the standard deviation of the signal to the noise 

is 52% over the period 1980 to 1991, an efficiency gain 
of 48%. For the latest year, the gains for the KF 
estimator are smaller, but still substantial, with a 
signal-to-noise ratio of 64%. 

Potential Efficiency Gains 
from Unemployment Rate Models 

Median ratio of standard error of 
.......................................... s~gn..a.. ~..c...l?..S..over..4...0..s.~ .(;.a...~.). ........... 

1980-91 1991 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Kalman Filter 64.9 63.5 
Kalman Smoother 51.6 56.9 

6. Conclusions  
Time series models of the CPS unemployment rate 

were fit to 40 state series. These models account for 
both the dynamics of the true population values and the 
sampling error structure. The models, in general, 
adequately fit the data and produce much smoother 
series than the sample estimates. 
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