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1. INTRODUCTION 
Policymakers have become increasingly sensitive 

in recent years to differences in socioeconomic 
conditions among regions, states, and localities. 
They have questioned whether the benefits of our 
social welfare system are shared equitably, and their 
concerns have intensified the need for subnational 
estimates for indicators of well-being and program 
effectiveness. Such estimates have been used to 
allocate program funds and to improve program 
effectiveness by targeting additional resources for 
expanding participation in those areas where 
participation falls far short of need. 

Although accurate estimates are vital to program 
success, very little is known about the relative 
accuracy of alternative estimators used to derive 
"small area" estimates (U.S. Office of Management 
and Budget 1993). The leading estimators developed 
for small area estimation can be classified as direct 
or indirect. To obtain an estimate for a particular 
area and a particular time period, a direct estimator 
uses only data for that area and time period. An 
indirect estimator "borrows strength," using data from 
other areas or time periods. In this paper, we assess 
the relative accuracy of the direct sample estimator 
and three indirect estimators: (1) a pooled sample 
estimator, (2) a regression estimator, and (3) a 
shrinkage estimator that combines direct sample and 
regression estimates. 

In Section 2, we describe the simulation methods 
used to evaluate the relative accuracy of direct and 
indirect estimates of state poverty rates. The 
rationale for our simulation approach and its 
potential limitations are discussed in Schirm (1993). 
In Sections 3 and 4, we present and summarize our 
simulation results. Our principal finding is that 
shrinkage estimates are substantially more accurate 
than direct sample, pooled sample, or regression 
estimates. In the remainder of this section, we 
discuss direct and indirect estimators. 

Aside from its simplicity, the principal advantage 
of the direct sample estimator is that it is unbiased. 
Its main disadvantage and the main motivation for 
considering indirect estimators is that there is often 
substantial sampling variability in direct estimates for 
small areas. The Census Bureau publishes Current 
Population Survey (CPS) sample estimates of state 

poverty rates with the warning that they "should be 
used with caution since [they have] relatively large 
standard errors" (U.S. Bureau of the Census 1993). 

An indirect estimator proposed to address this 
problem of imprecision is the pooled sample 
estimator. Pooling combines sample data from 
different time periods. Haveman, Danziger, and 
Plotnick (1991) derived state poverty rate estimates 
by combining CPS samples for three consecutive 
years and dropping overlapping observations from 
the first and third years. This approach 
approximately doubles sample sizes and, therefore, 
reduces standard errors by nearly 30 percent based 
on conventionally used calculations. The drawback 
is that a pooled estimator is biased, since a state's 
pooled poverty rate for a single year is a weighted 
average of its poverty rates for three years. 

An alternative to a time-indirect estimator like the 
pooled sample estimator is a domain-indirect 
estimator, which uses data from different domains 
(areas) rather than different time periods. The 
regression estimator is domain indirect and 
commonly used. Developed by Ericksen (1974), it 
combines sample data with symptomatic information, 
using multivariate regression to "smooth" direct 
sample estimates, that is, reduce their sampling 
variability. The basic regression model for estimating 
state poverty rates is: 

Y - X B  , u ,  

where Ys is a vector of direct sample estimates, X is 
a matrix containing data for each state on a set of 
"symptomatic indicators" typically obtained from 
census or administrative records data with little or no 
sampling variability, B is a vector of unknown 
coefficients, and U is an error term. The regression 
estimator is" 

Y -- x / } ,  

where /} is the least squares estimate of B. Thus, 
the regression estimates of state poverty rates are the 
predicted values from the regression model. In the 
regression, the state observations are often weighted 
by a measure of the reliability of the direct sample 
estimates. Because of regression toward the mean, 
the regression estimator is biased. 

Except in estimating the regression coefficients, 
the regression estimator makes no use of the direct 
sample estimates. Likewise, the direct sample 
estimator ignores the systematic relationships among 

1071 



state poverty rates. In contrast to these estimators, 
shrinkage estimators seek to use all available 
information or, at least, the information that is most 
relevant and practical to use. 

Also known as compromise or composite 
estimators, shrinkage estimators calculate optimally 
weighted averages of estimates obtained using other 
methods, such as direct sample and regression 
estimates. A shrinkage estimator draws on the 
relative strengths of the alternative estimates to 
obtain a better estimate. The strength of the direct 
sample estimate is unbiasedness, and the strength of 
the model estimate is low sampling variability. A 
shrinkage estimator optimally combines alternative 
estimates to minimize an overall measure of error, 
like expected mean squared error, that reflects both 
bias and sampling variability. 

The simplest form of a shrinkage estimator is: 

Yc = aY1 + (1 - a ) Y  2, 
where Yc is the shrinkage estimator that combines 
the alternative estimators Y1 and Y2, a is the vector 
of weights on the elements of Y1, ( 1  - a) is the 
vector of weights on the elements of Y2, and 0 < a 
< 1. To optimally combine alternative estimates, a 
shrinkage estimator weights the estimates according 
to their relative reliability. Thus, all else equal, a 
shrinkage estimator would place a large weight on 
the direct sample estimate for a large state and a 
small weight on the direct sample estimate for a 
small state. Fay and Herriott (1979) developed a 
shrinkage estimator that combined sample and 
regression estimates of per capita income for small 
p la~s  (population less than 1,000) receiving funds 
under the General Revenue Sharing Program. 

2. THE SIMULATION PROCEDURE 
In this section, we describe our simulation 

procedure. The procedure has four basic steps: (1) 
specify a population, (2) draw multiple samples from 
the population, (3) calculate direct and indirect 
estimates, and (4) compare the relative accuracy of 
the alternative estimates. After discussing these four 
steps, we describe the additions to each step required 
to obtained pooled sample estimates. 

2.1 Step 1: Specify a Population 
We use the March 1990 CPS sample as the 

population, ignoring the weights on observations. 
This gives a total population size of approximately 
158,000 individuals and state populations ranging 
from under 1,300 to over 14,000 across the 51 states 
(the 50 states and DC). Except for the poverty 
income thresholds used, we specify the poverty status 
of each individual in the population using the same 

definition employed by the Census Bureau in 
deriving poverty estimates from the CPS. We use 
the simplified guidelines based on family size and 
state of residence that are used for determining 
eligibility for several federal programs as the poverty 
guidelines for our simulations, averaging guidelines 
for the first and last six months of 1989 to obtain 
calendar year 1989 guidelines. 

2.2 Step 2: Draw Multiple Samples 
In the second step of our simulation procedure, 

we draw multiple samples from the population. The 
purpose in drawing multiple samples is to determine 
how sampling variability contributes to the 
inaccuracy of direct and indirect estimates. 

Step 2a: Calculate the Sample Size for State i, i = 
1, 2, ..., 51. Replicating the complex CPS sample 
design in our simulations is well beyond the scope of 
this study. Nevertheless, we draw samples to ensure 
that the standard errors of the direct sample 
estimates in our simulations will generally equal or 
be very close to the standard errors--calculated to 
reflect the complex CPS sample design--for weighted 
CPS poverty rate estimates. 

To simplify the simulation procedure, we use 
stratified simple random sampling, stratifying only by 
state. Within strata, we sample without replacement. 
Our expression for calculating the sample size for 
state i, which is derived in Schirm (1993), is: 

T, [s~ + p ,  (1 - p , ) ]  
t l t  = 2 

Tis t  +Pt  (1 - p t )  

For the simulations, we set s t equal to the standard 
error of the weighted CPS poverty rate estimate for 
state i. T t is the population size, and Pt is the 
poverty rate (expressed as a proportion) in the 
population specified in Step 1. This Pt is the "true" 
poverty rate for state i in our simulations. It is easy 
to show that the estimated standard error for a direct 
sample estimate for state i in our simulations will 
generally equal or be very close to s r State sample 
sizes range from about 220 to over 2,200. 

Step 2b: Draw, Without Replacement, a Simple 
Random Sample of Size n i for State i, i = 1, 2, ..., 51. 
Individuals in the population are stratified by state, 
and independent samples are drawn in each state. 
The 51 state samples constitute a single national 
sample (henceforth, a "sample"). 

Step 2c: Draw 1,000 Samples. We repeat Step 2b 
1,000 times, drawing 1,000 independent samples. 
Each of the 1,000 repetitions of our simulation 
procedure beginning with the drawing of a sample 
(Step 2b) and ending with the calculation of direct 
and indirect estimates (Step 3) is an "iteration." 
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2.3 Step 3: Calculate Direct and Indirect Estimates 
Step 3a: Calculate Direct Sample Estimates. For 

state i, the direct sample estimate of the proportion 
poor is the number of individuals in the sample who 
are poor divided by the sample size, n c We calculate 
standard errors using the well-known formula for the 
standard error of a proportion estimated from a 
simple random sample drawn without replacement. 

Step 3b: Select the Best.Fitting Regression Model. 
Our regression model regresses the 51 direct sample 
estimates of state poverty rates on symptomatic 
indicators measuring state characteristics that are 
likely associated with interstate differences in poverty 
rates. We need to specify the symptomatic indicators 
included in the "best-fitting" regression model in a 
particular iteration and seek a model accounting for 
much of the interstate variation in poverty rates with 
a small number of symptomatic indicators. 

We allow for up to five symptomatic indicators: 
(1) the proportion of the state population receiving 
Supplemental Security Income, (2) state per capita 
total personal income, (3) the state crime rate, (4) a 
dummy variable equal to one for the New England 
states, and (5) a dummy variable equal to one ff at 
least 1 percent of the state's total personal income is 
derived from the off and gas extraction industry. 1 
Our model-fitting procedure selects the model that 
maximizes: 

.R2 =1  - [ 51 - 1 ] (1 -R2)  
5 1 - k - i  

where k is the number of symptomatic indicators in 
the regression model (ranging from one to five), and 
R 2 is the usual coefficient of multiple determination. 
Whereas adding a symptomatic indicator always 
increases R 2, R2 will decrease ff the improvement in 
fit, as measured by R 2, is small. We repeat our 
model-fitting procedure for each iteration. 2 

Step 3= Calculate Shrinkage Estimates. We use 
an Empirical Bayes shrinkage estimator. This 
estimator was used by Ericksen and Kadane (1985) 
to estimate population undercounts in the 1980 
census for 66 areas covering the entire U.S. and by 
Schirm, Swearingen, and Hendricks (1992) to 
estimate state poverty rates and Food Stamp 
Program participation rates. It was originally 
developed by DuMouchel and Harris (1983). 

Our shrinkage estimator is: 

Y c =  D + - ~  

where Yc is a (51 × 1) vector of shrinkage estimates, 

and Y, is a (51 x 1) vector of direct sample 
estimates. D is a (51 x 51) diagonal matrix with 
diagonal element 0;/) equal to one divided by the 
variance (standard error squared) of the direct 
sample estimate for state i. P = 1 - X ( X ' X ) - ] X  ', 
where I is a (51 x 51) identity matrix and X is a (51 
x K) matrix containing data for each state on a set 
of k = K - 1 symptomatic indicators. (The other 
column of X consists of all ones and allows for an 
intercept in the regression model.) u 2, a scalar 
reflecting the lack of fit of the regression model, is 
estimated by maximizing the likelihood function: 

L = IWl xr2 IX zwxl-aa exp 

where IV = (1) -1 + u: l )  - I  and S = W -  
W X ( X ' W X )  - ~X'W. The  variance-covariance matrix 
of our shrinkage estimator is: 

[ 1 r ~  c - D+--P . 
u 2 

2.4 Step 4: Compare the Relative A ~ r a ¢  N of 
D k r ~  and I m f i ~  Estimates 

In this paper and in Schirm (1993), we compare 
the relative accuracy of the alternative estimates 
according to a wide variety of accuracy criteria, 
including root mean squared errors (RMSEs) and 
mean absolute errors (MAEs). For all assessments 

: of accuracy, the true poverty rates remain the same 
across iterations anti are the poverty rates in the 
population specified in Step 1. 

2.5 Pooled Sample Estimation 
To obtain pooled sample estimates, we must add 

to the first three steps of our simulation procexlure. 
In Step 1, we must define "populations" from which 
to draw samples. To simulate the most often used 
procedure of pooling three consecutive annual 
samples, we use the nonoverlapping observations 
from the March 1989 and March 1991 CPS samples. 
In Step 2, we draw a sample of n/2 individuals from 
the March 1989 CPS observations and a sample of 
n/2 individuals from the March 1991 CPS 
observations for state i. These n~ additional 
individuals are pooled with the n t individuals selected 
from the March 1990 CPS to double the sample size. 
In Step 3, the pooled sample estimate of the 
proportion poor is the number of poor individuals in 
the pooled sample divided by the sample size, 2n r 
We estimate the standard error for the pooled 
sample estimate by multiplying the standard error for 
the direct sample estimate by ~ . 
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3. SIMULATION RESULTS 
In this section, we compare the accuracy of point 

estimates from the direct sample, pooled sample, 
regression, and shrinkage estimators. Then, we 
compare how well the four estimators estimate a key 
feature of the distribution of state poverty rates. 
Finally, we compare how well the four estimators 
estimate error, that is, how wen estimated standard 
errors and confidence intervals reflect the uncertainty 
in the poverty rate estimates. 

3.1 Accuracy of Point Estimates 
Altogether, from each of the four estimators, we 

obtain 51,000 estimates-51 state estimates for each 
of the 1,000 iterations. It is not meaningful to 
compare the errors in the four estimates for a single 
state in a single iteration. The estimates and, hence, 
the estimation errors may be unusual due to 
unusuaUy large or small sampling errors. To control 
for the influence of sampling variability and discover 
what errors are typical, we need to aggregate 
estimation errors. Schirm (1993) takes three 
approaches to aggregating errors: (1) aggregating 
errors across iterations for each state, (2) aggregating 

are 17 and 34 percent. Thus, relative to the other 
three estimators, the shrinkage estimator usually 
increases accuracy substantially. It rarely decreases 
accuracy and almost never decreases accuracy by 
much.3,4, 5 

3.2 Distributional Accuracy 
Although Schirm (1993) considers several criteria 

measuring how accurately the alternative estimates 
represent characteristics of the distribution of state 
poverty rates, we explore here only whether the 
estimators rank states accurately in a tail of the 
poverty-rate distribution. We could imagine a 
federal program providing states with the highest 
poverty rates some kind of economic assistance. 
How well do the alternative estimators identify, say, 
the "top 10" states-the 10 states with the highest 
poverty rates? 

In Table 2, we find that the shrinkage estimator is 
substantially more likely to identify 9 or 10 of the 
top 10 states than are the other estimators. In about 
three-quarters of the iterations, the shrinkage 
estimator correctly identifies at least 9 of the 10 
states with the highest poverty rates. The direct and 

errors across states for each iteration, and (3) , pooled sample estimators attain that standard less 
aggregating errors across all iterations and states. ' than half the time (in 40 and 47 percent of the 
Here, we report results from mainly the second 
approach since all three imply the same conclusions. 

In Table 1, we compare the accuracy of the direct 
sample, pooled sample, and regression estimators 
relative to the shrinkage estimator on the basis of 
RMSEs calculated for each iteration. In the direct 
sample estimation column, iterations for which the 
shrinkage estimator has a lower RMSE than the 
direct sample estimator are counted in the top panel 
of the table, while iterations for which the shrinkage 
estimator has a higher RMSE are counted in the 
bottom panel. Thus, shrinkage increases accuracy for 
iterations in the top panel and decreases accuracy for 
iterations in the bottom panel. In both panels, we 
display the distribution of iterations according to the 
percent change in the RMSE due to shrinkage. The 
relative accuracy of the shrinkage estimator falls as 
we move down in each column. 

According to Table 1, shrinkage increases accuracy 
(reduces the RMSE) 97 percent of the time and 
decreases accuracy only 3 percent of the time relative 
to the direct sample estimator. The median 
reduction in the RMSE is 21 percent. For only 1 
percent of iterations does shrinkage increase the 
RMSE by more than 10 percent. Compared with the 
pooled sample and regression estimators, shrinkage 
increases accuracy 90 and 100 percent of the time, 
respectively. The median reductions in the RMSE 

iterations, respectively). Although the regression 
estimator correctly identifies all of the top 10 states 
in just one iteration, it does get 9 fight well over half 
the time. 

3.3 Accuracy in Estimating Error 
It is usual statistical practice to provide some 

expression of the uncertainty associated with point 
estimates. In this section, we assess the accuracy of 
estimated standard errors and confidence intervals as 
expressions of our uncertainty and the error in point 
estimates. We ask, specifically, whether 95-percent 
confidence intervals provide 95 percent coverage. 

According to Table 3, coverage is very close to 95 
percent for the direct sample and shrinkage 
estimators. For both estimators, over 93 percent of 
the 51,000 confidence intervals--one for each of the 
51 states in each of the 1,000 iterations--contain the 
true poverty rate. 6 However, for the pooled sample 
estimator, coverage is below 85 percent, falling 
substantially short of the nominal (95 percent) level. 
Coverage for the regression estimator is only a little 
over 50 percent. 

4. SUMMARY 
According to the several alternative measures of 

accuracy considered here or in Schirm (1993), we 
find that shrinkage estimates are substantially more 
accurate than direct sample, pooled sample, or 
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regression estimates. For example, calculating 
RMSEs and MAEs for each iteration of our 
simulation procedure, we find that there is at least a 
90 percent chance that shrinkage will improve 
accuracy. The median reductions in the RMSE or 
MAE are large--about 15 to 20 percent relative to 
the direct and pooled sample estimators and over 30 
percent relative to the regression estimator. 
Shrinkage rarely decreases accuracy, and even when 
it does, the loss in accuracy is usually small. 

In evaluating the accuracy of estimated standard 
errors and confidence intervals as expressions of our 
uncertainty, we find that for the pooled sample and 
regression estimators, standard errors and confidence 
intervals are misleading. The standard errors are too 
small, and the confidence intervals are too narrow, 
underestimating our uncertainty and giving a false 
sense of accuracy. In contrast, standard errors and 
confidence intervals for the direct sample and 
shrinkage estimators generally reflect accurately the 
uncertainty in estimated poverty rates. 

NOTES 
tSchirm, Swearingen, and Hendricks (1992) examined 
these and other symptomatic indicators. Data 
sources are listed in Schirm (1993). 

2The regression estimator examined here weights 
state observations based on the precision of the 
direct sample estimates and is: 

= x(x '  DX)- o Y,. 
To replicate a commonly used approach, we calculate 
the variance-covariance matrix of the regression 
estimator according to: 

["r = [ (Y" - Yr)/D(Y*51 - K  - Yr)] X(X/DX)-~X/ 

X, D, Ys, and K are defined in Step 3c. 

3Results for M A ~  differ little from the results for 
RMSEs. Compared with the direct sample, pooled 
sample, and regression estimators, shrinkage 
increases accuracy 97, 90, and 100 percent of the 
time according to MAEs, and the median reductions 
in the MAE are 20, 17, and 36 percent, respectively. 

4Because states are different sizes, aggregating errors 
across states raises the issue of whether to 
differentially weight state errors. Schirm (1993) finds 
that estimates of relative accuracy are not sensitive to 
the weighting scheme used. 

5Based on RMSEs for states (rather than iterations), 
the shrinkage estimator increases accuracy for 43, 33, 
and 33 states compared with the direct sample, 

pooled sample, and regression estimators, 
respectively. In the median state, shrinkage reduces 
the RMSE by 20, 14, and 27 percent. Aggregating 
errors across both iterations and states, we find that 
shrinkage reduces RMSEs (and MAEs) by 15 to 20 
percent compared with the direct and pooled sample 
estimators and by 30 to 45 percent compared with 
the regression estimator. 

6Shrinkage confidence intervals, however, are 
substantially narrower than direct sample confidence 
intervals, implying less uncertainty. The median 
reduction in width from shrinkage is 22 percent. 
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Table 1. Percentage of Iterations for which the Shrinkage Estimator Has Lower Root Mean Squared 
Error than the Direct Sample, Pooled Sample, and Regression Estimators 

Percentage of Iterations 

Direct Pooled 
Effect of Shrinkage Sample Sample Regression 

i i ii          !i   !     i !i  ! i i! iiiiiiiiiiJ iii!iiiiii!i ii!i!iiiiiiiiiiiiiiiii!iiiiiiiiii!iiiii!iiiiiiiiiiiiii iii iiiiiiiiiiiiiiiiiii ii   i     iiN   i   i   iiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiii iiii i iii iii i 
Percent Decrease in RMSE: 

> 30 10 8 71 
20 - 30 43 28 28 
1O- 20 35 36 1 
O- 10 10 18 O 

i iiii  iiiiii ii iiiiii!iiiiii iiiiiiii ii!i ii !ii iiiiii i i ii!i!iiii iiii!i! iiiiiii  iiiiii i  iii iiii i i i   i i i!i iiiiii!iii iii  i ii   i!i !  i iiN  ii    iiNNiii!i i i  iiiii iiiiiiiiii iiiiiiiiiiiii i!i  
Percent Increase in RMSE: 

O- 10 2 8 0 
> 1O 1 2 0 

Table 2. Accuracy in Identifying the Ten States with the Highest Poverty Rates 

Percentage of Iterations 

Number of Top Ten States Direct Pooled 
Correctly Identified Sample Sample Regression Shrinkage 

6 2 0 0 0 
7 14 7 3 1 
8 44 46 35 24 
9 36 46 62 58 

10 4 1 0 16 

Coverage Criterion 

Table 3. 9$-Percent Confidence Interval Coverage 

Direct Pooled 
Sample Sample Regression 

Percentage of All 95-Percent Confidence 
Intervals Including the True Value 

Shrinkage 

94.4 84.3 52.8 93.2 
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