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Abstract

Given data from a number of small areas, we use a rank-
based method to estimate the finite population mean of one of
these areas. As the areas are similar, we use a model which per-
mits “borrowing of strength” from other areas. In particular,
we use the nested error regression model; otherwise known as
an error component model used in two-stage cluster sampling.
One important feature of our method is that there is no need
to assess assumptions of normality which is necessary to imple-
ment most methods for small areas. We obtain R-estimates of
the model parameters by minimizing a dispersion function and
we show that the R-estimators have desirable asymptotic prop-
erties, We predict the finite population mean of a small area
based on the R-estimate and the model. Finally, we illustrate

the methodology by a numerical example.

1 Introduction

Small area estimation is extremely useful to government agencies
that address the issues of distribution, equity and disparity. It is
particularly appropriate in a setting that involves several areas
with only a small sample available from each area. One param-
eter of interest is the finite population mean of one area and a
procedure which borrows strength from other neighboring areas
is usually used. Further, it requires normality of the responses
and transformation might be needed to obtain normality. The
objective of this article is to develop a rank-based method to

predict the mean of a small area.

In recent years model based estimation procedures for small
area estimation are widely addressed. Ghosh and Rao (1994)
gave an excellent review of the recent literature on small area es-
timation. The methods usually invelve either an empirical Bayes
approach or a full classical approach in which variance com-
ponents are estimated. Both these procedures assume certain
mixed models for prediction purpose. First, certain best linear

unbiased predictors (BLUP) or EB predictors are obtained for

the unknown parameters of interest assuming the variance com-
ponents are known. Then the unknown variance components are
estimated typically by Henderson’s method of fitting constants
or REML method, and the resulting estimated BLUP’s are used
for final prediction. Although, the above approach is usually
quite satisfactory for point prediction, it is very difficult to esti-
mate the standard errors. Ghosh and Lahiri (1989) proposed a
hierarchical Bayes (HB) procedure as an alternative to the esti-
mated BLUP or the EB procedure. The standard errors of the
estimates, though complicated, can be obtained via numerical

integration without any further approximation.

In this article we neither require any distributional assump-
tions nor estimation of variance components in predicting the
mean of the small areas. However, estimateof variance compo-
nents are required for the prediction errors. In Section 2 we
present the model and assumptions. In Section 3 we obtain R-
estimators together with their asymptotic properties. In Section
4 we describe residuals and model fitting. A point predictor of
the finite population mean of a small area is given in Section
5. A numerical example is given in section 6, and Section 7 has

conclusions.

2 Model and Assumptions

Assume that data are available from ¢ small areas, and the i**®
area has M; individuals, ¢ = 1,2,...,¢c. Let Y;; be the value
of the j** unit in the i** area. Let Y; = [Y;1,Y:2,..., Yisg)'
denote the vector of all values of all individuals from the i**

area.

We assume that from each of the ¢ small areas a random
sample of m; individuals are drawn at random from the ith area
(Z‘c m¢ = mg). Let y, = (i1 -+ ¥im;)' be a vector of m;
observations from the ith cluster on a response variable y, and
let (@i1ky+« s Tim;ks kK =1,...,p—1) be the associated values of
p — 1 covariates which have influence on ¥, Following Battese,
Harter and Fuller (1988) we consider the nested error regression

model

Y.-,-=ao+g:jé+v.~+u‘-j,j=1,...,M.-,i=1,...,c (2.1)
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where z,. = (Zij1s- 2 ®ijp—1)s B = (B1,...,8p-1) is the
iid. iii.d.

vector of regression parameters, v; ~ N(O0, 63), ui; o~

N(o, 0,2‘ ), and v;’s are independent of u;;’s. In econometrics this
model is known as an error component model and it is widely
used for combining cross-section and time series data. For a sam-
ple of size m; from the ith area the model (2.1) can be written

as

Yij=ap+tegf+ei,i=l....omui=12...,¢c (22)

For the ith area the model may be written in matrix notation
= a.l..m‘- + X!’E"" & where 2‘ = (},"111,i21 ey ),im")ly

les1, €2+ - ., €im; ]’ With €5 = v; +u;;, and X; denoting the

as

z‘.
g‘. =
m; X (p — 1) matrix with rows géj,j =1,...,mi. In parametric
inference we assume that ¢; ~ N(0, an.-), where o2 = 03 + 03
and V; = [(1 — p)Im; + pJm;), p = 03/02 is the common intra-
area correlation, Ip,; is the m; X m; identity matrix and Jn,; is

the m; x m; unit matrix.

In some situations the assumption of multi-normality of ¢;
may not be valid. In such cases experimenters may prefer an
alternative non-parametric procedure. In this article we assume

that:

(1) The ¢; (¢ = 1,2,...,¢) are independent and continu-
ous random vectors, and the elements of ¢; (i = 1,2,...,¢)
are exchangeable random variables. Further, all the ¢;’s (i =
1,2,...,¢) have the same distributional form F(.,.,...,.);

(2) f_"; f(¢,€)de < oo, where f(.,.) is the bivariate p.d.f. of
any two components of ¢;;

(3) z?j,, < B, where B is finite and z;;i’s do not depend on c;
and

(4) Sup;y,...,.mi = m < oco.

Our objective is to use an even, location-free measure of

dispersion that produces R-estimate of (k=1,2,...,p—1).

Let E = (1,82, ﬁp_l)' be the partial regression coeffi-
cients corresponding to the model (2.2). Let ny; = 1if j < m;

and 0 otherwise. For the ith area we define a dispersion function

as follows:
m p—1 r—1
R(wij — D71 Baziin) 1
D;(8) = E i T —ollvii— E Br Tijk];
£
j=1 k=1
where R(yij — :;i Brzijr) is the intra-area rank of the resid-

ual, yi; — Z:;i Brxijr, corresponding to the j“‘ individual
(7 = 1,2,...,m;) in the ith area. The combined dispersion

function for all small areas is

D@ = Di(B).
i=1

Similar dispersion function like D{3) was used for repeated mea-
sures incomplete block designs (see Rashid 1995) and one-way
repeated measures with a changing covariate (Rashid and Nan-

dram 1995).

This even, location free measure is a linear, rather than
quadratic, function of the residuals with coefficients determined
by the ranks, or sizes, of the residuals. Hence it is expected that
the R-estimates generated by D(-) will be more robust than least
squares estimators since the the influence of the outliers enters
in a linear rather than a quadratic fashion. Further D(B) is a

nonnegetive, continuous and convex function of 3.

3 R-Estimators

Let é minimize the dispersion function D(g). Then é is called
the R-estimator of f. Let I' = (8 : D(-) = minimum). Then T is
bounded. Note that é may not be unique. So in practice there
may be arbitrariness in its definition. However, the diameter of
the set of all possible values of \/Zé tends to zero as ¢ — 0. See

Jaeckel (1972) for further discussions.

In order to develop the asymptotic distribution of 3 we need
the gradient of the dispersion function as well as its linear ap-

proximation.

The domain 3 space of D(-) consists of finite number of con-
vex polygonal subsets, on each of which D(-) is a linear function
of 8. Therefore the partial derivatives exist almost everywhere

and are given by

aD(p) —— R(yij—-zz;llﬁkc.‘jk) 1
2O S e 1

i=1 j=1

k=12...,p— 1 Let §(8) = [S](é),S)(ﬂ),...
where

’ Sy—-l(ﬁ)]lw

"~ — Rlys; — 307 Braapn) 1
Sk(f) = Z Zﬂ«';‘[ - Ei‘f — - P iarll
i=1 j=1

Asymptotic distributions of the R-estimators will be devel-
oped under the error component model. Therefore our results
can be considered as an extension of the linear model with i.i.d.
errors to nested error component model. In this article our as-
sumptions are weaker than the 1.i.d. error model in parametric
inference. Even though the ranking of the residuals are done
within each area separately, there is a borrowing strength from

other areas since the R-estimates are obtained by minimizing the
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combined dispersion function. For balanced designs, estimates
and tests, achieve Friedman efficiency and as a result perform

better for heavy-tailed distributions.

‘We will use the R-estimators to construct a predictor of the
finite population mean of a small area. We are not able to es-
timate « because inclusion or exclusion of a in the dispersion
function does not alter the ranks of the residuals. Therefore, we
-sBp-1)' by

minimizing the dispersion function. However, as mentioned ear-

will only obtain the R-estimates of (81,82, 89,..

lier, the estimate of o will be obtained from the residuals. Let
EU be the true value of 3. Without loss of generality, throughout

the paper we assume that EO =0.
Under assumption (1), if ny; # 0,
Bo[Ri;] = (m: +1)/2, Varg[Ri;) = (m? —1)/12;

and if i = ¢/,

Covg[Rij, R"Ij/] = —(m; + 1)/12 and Covy[R;;, Ri'j] = 0.

Thus,
Eg[Sk(0)} =0, k=1,2,...,p— 1,
Covo[—skw), s,,'(on = Gunrs
where
_ < : nijn; /G}ka 1!
Thk! = Z Z e(mi +1)
i=1 4=
(k#K =1,...,p—1).
Also
1
Varg[—S,(0)] = &
D[ﬁ k(0)] = ok
where
ml"l] Tijk — i, k)
-_>- E = , k=1,2,... — 1.
c(m.+l) = Okk 3 4y s P
i=1 j=1

Let X be the covariance matrix of *g(g) under the true
value l_io = 0. Then ¥ = (o). Note that the rank of ¥ would
be p — 1. Assuming that the lim._, o X, let

A= lim X, (3.3)

c—oo
and assume that this limit exists. To establish the properties of
the R-estimators we first present Lemma 1. Let the true value

By=0

The following lemma gives the asymptotic distribution of
S(0) under the true value.

Lemma 1: Under assumption (1),

VA= S@)-2 MV N(g, 4) as ¢ - oo,
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where A is defined in (3.3).

Lemma 1 follows from a multivariate central limit theorem

(See Rao 1973, p. 147).

Next we present our main results about the properties of

the R-estimators.

Theorem 1: Suppose assumptions (1) - (4) hold for the

model (2). Let EO be the true vahie of 8. Then,

fc(g—_ﬁ_o)/ri»MV{v[g, Al as ¢ — oo.

Proof: First we approximate the gradient vector of the disper-
sion function by a linear function. Let Fj be the probability
computed under the true value, A € R? ~1 and the true value
AO = 0. Using a Taylor’s expansion in the neighborhood of 8, it

can be shown that
1 1 1 1
E, ~s{ = —~ oS0 > —=
ave [c (\/Eﬁ) p (_)} ~ AL

where Eg is the expectation under the true value 0

1/[\/1_2f_°°w f(e, €) de).

T =

Let 0 = dmz, 8. Now

vm[\/z{%{sk(-}m — s (@]}

m
< 12mBZn;,~Eo[R (Yis — 0:5) = R(Yij)> — 0ase — oo.

i=1

By appealing to Markov’s inequality, we have
1 1 1 1

v {ts (da) - tsw} o 2a] 5] -0
c NG ¢ T

Since S(-) is monotone, by using similar arguments given in

Rashid and Nandram (1995) we have:

lim Py [

c— o0

. ~ 1 A
lim Po[Sup|[vZe{3 ~ —AS@)}| 2 ¢f€T] =0 (3.4)
c—oo -~ eT =
Hence, using Lemma 1 and (3.4), we prove Theorem 1.

Note that, Theorem 1 shows that our R-estimators are
asymptotically unbiased and consistent. Further their asymp-
totic distributions are distribution free even if we replace 7 by a
consistent estimate 7. Let ¥ be a consistent estimator of . Then

by Slutsky’s Theorem
Vel - g°/#-2sMVN[g, A] as ¢ - oo. (3.4)

Moreover, the above asymptotic distribution is independent of

the parent distribution (i.e. distribution free).



4 Model Checking

The rank-based fitted value for model (2.1) of y;; is §i; =

-1 - .
::1 Brzije + ;. where

p-1
v; = med(yi; — E ,ékz,-jk ti=1,2,...,m4).
k=1

Then, we obtain residuals of the model (2.1) as
Uij = Yi; — Pij-

This practice of computing the residuals i;; is recommended in
Minitab reference manual (1991, p. 10-12) for inferences con-
cerning block designs based intra-subject ranks. In order to ob-
tain studentized residuals of the model (2.1), we need an esti-
mate of o, (The standard deviation of u; in model (2.2)). A
robust estimate is given by the mean absolute deviation (MAD)

of 4;j :

du=y Y li; — Meds; (@)} /me,
=1 j=1

c

where mo = Zi=1
check whether the fitted model (2.1) is adequate.

m;. We can plot the @;; /&, versus §;; to

Although we are not able to estimate « using the dispersion

function, one can take

& =med(P;,1=1,2,...,¢).

Let §(ij) denote the predicted value of y;; when (ij)*® is
deleted from the model. Then the change in the robust fit due

to the ¢** case is
RDFFIT;; = yi; — 9(4j),

where RDFFIT;; is our measure of the influence of case ij.
Analogous to least-squares analysis, studentized RDFFIT;; will
detect an influential observations. Further, one can compute
RDCOOK;;. Notice that we have put R in front of the above
measures to denote rank analog of least-squares diagnostics. See

McKean et al (1990) for further discussions.

5 Point Predictor

In this section we show how to predict the finite population mean

of each small area and how to estimate the prediction error. Let
M;

Y: = E Y;; be the finite population mean of the i** small area

i=1

i=1,2,...,c. Letting f; = m;/M; be the finite population

correction for the i*® small area, observe that

V= £ + (- £ (5.1)

mg M;

where 17,'(") = ZY«':‘/TM and )_’,-("') = Z Yi; /(M; —my).
=1 j=mit1

Note that ﬁf") is computed from the observed data and )_".("")

is to be predicted.

First, we obtain the point predictor of ¥;, the finite pop-

my
ulation mean of the i*® area. Let :Ef’,z = E Xijk/mi and
j=1
M;
X'.(.':) = E Xije/(Mi —mg) i = 1,2,...,cand k =

j=m;+1
1,2,...,p—1. Also let gf") = (55:’1))’ vy 552_1)' andé‘(."’) =
()?‘("'1’), ces (Xi(-,:—)l ). Assuming the model specification in

(2.2), with appropriate expectations,
EF) =a+ g XM (5.2)

To obtain a predictor for )7,.("’) we substitute our rank-based
estimators into (5.2). It follows that the predictor for the finite

population mean of the i** area is
50 = 5+ (1 - 1B E) - 2). (5.3)

The predictor in (5.3) is a rank-based regression survey predic-
tor. It is expected to be robust. One version of this estimator
was considered by Sarndal (1984). Notice that the generalized
least squares estimator and corresponding predictor under the
model (2.1) contain the ag and 0,2,. However these variance com-
ponents are unknown and have to be estimated, and in our case
we do not need to estimate them. The standard error of rank-
based survey regression predictor can be obtained as follows.

~(R)

The prediction error is y;

~(R)

dard error of y;

- Y:. In order to compute the stan-
, we need to assume that the covariance matrix

of £ exists. As our model assumes exchangeability,
2
COV(S( =0 [(1 s p)-’m" Xmy -+ PJm,'Xm,']-

We also need the covariances between the non-sampled obser-
vations and é, which can be obtained by using the one-step R-
estimator defined in (3.4). However, these covariances depend
on the scale parameter 7. As a the mean squared error of the
predictor will contain 02, p and 7 robust estimates of o2 and 4

can be obtained as follows:

&, = 1.483Med; {|?; — Med;9;|},

L2 _ A2 .2
and 6° =6, + &,
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The 32 is defined in section 4. An estimate of pis j =
&2/32. It can be shown that parameter v/1Z/r is the density of
€ij — €5 (3 # §') st 0 (median) under the model (2.1). There-
fore, an estimate of T can be obtained from the residuals using
Bloch and Gastwirth (1968) density estimate. See also Rashid
and Nandram (1988) for further details. The standard error of
the predictor of this article is nonparametric anslogue of Prasad
and Rao (1990).

6 Example

‘We consider an example described by Battese, Harter and Fuller
(1988) which concerns the estimation of areas under corn and
soybeans for each 12 counties in North-Central lowa using farm-
interview data in conjunction with LANDSAT satellite data.
Each county was divided into area segments, and the areas un-
der corn and soybeans were ascertained for a sample of segments
by interviewing farm operators. The number of segments in the
sampled counties ranged from 1 to 6. The total number of sege-
ments in the different counties ranged from 394 and 965. Thus,
this is, indeed an simall area problem. Auxiliary data in the form
of number of pixels (a term used for “picture elements” of about
0.45 hectares) classified as corn and soybeans were also obtained
for all the area segments, including the sample segments, in each
county using the LANDSAT satellite readings. p Battese, Har-
ter and Fuller (1888) employed a “nested error regression” model
involving random small area effects and the segment-level data
and then obtain the estirnates of county areas under corn and
soybeans using the classical components of variance approach.
They obtained the following fitted regression equations:

Corn : yi; = 51 + 0.328z1;1 — 0.134 z;;2,

Soybeans : y;; = —16 + 0.028z3;1 + 0.494 z;;7.

Datta and Ghosh (1991) applied the HB approach to these data
and show that the two approaches give similar results.

We apply the method developed in this article to the same
data. We obtain the R-estimates of the partial regression co-
efficients by minimizing the dispersion function. We have used
the Nelder-Mead algorithom to minimisze the dispersion function.
The rank-based estimated regression equations are:

Corn : Vij = 47.64 + 0-315‘21,'1 - 0.1019 Lij2:s

Soybeans : yi; = —41.13 + 0.1020z1;; + 0.5036 z;;,.

Using the results of Section 4, we have plotted studentized resid-
uals of the model (2.1) with respect to the corresponding fitted
values. (The plots are omitted.) The points in the plots do not

show any patterns. It appears that for the corn data the second
farm in Hardin county is an cutlier. Also for the soybean data
the second farm in Pocahontas county is an outlier. (The stu-
dentised residuals in the first case is -6.72, and for the second
case is -5.32). Otherwise, the fitted models are consistent with
the data.

‘We have fitted the nested error regression model 2 without
the observation 2 in Hardin county. The fitted models are:

Corn : yi; = 65.80 + 0.2804z1;; — 0.1519 z;;7,
Soybeans : y;; = —36.82 4 0.09732y;; + 0.4904 z;;2.

In Table 1 we present the rank-based survey regression predic-
tors ( with and without the second observation in the Hardin
county)and the best predictor for both corn and soybeans. No-
tice that for both corn and soybeans these predictors are very
similar to trsectionhose obtained by Battese, Harter and Fuller
(1988). However, without second observation in the Hardin
county the survey regression predictors are close to the best pre-
dictors which is expected.

7 Concluding Remarks

‘We obtain a rank-based method for estimating the finite popu-
lation mean of a small area. Our R-estimates are easy to obtain
using the Nelder-Mead simplex algorithm. We showed that the
rank-based estimates of the regression parameters have reason-
able properties. Our method is very simple and easy to com-
pute. Although we do not assume normality, the estimate of
the finite population mean of each area is close to the BLUP
of Battese, Harter and Fuller (1988). We expecr'thu this work
would stimulate research in nonparametric me’ti:ods for small

area estimation.
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