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Abstract Multiple imputation has been 
previously applied for mass imputation, that is, 
the imputation from a subsample with complete 
information to a larger sample. In such 
applications, the missing data rates are often 
substantial, such as 80 percent or more, but valid 
inferences should, in principle, be within reach 
when probability sampling is used. Yet, 
limitations of multiple imputation can become 
severely amplified in this setting (Fay 1994). 

This article combines an alternative strategy to 
multiple imputation, called fractionally weighted 
imputation, with a model assisted approach to 
estimation. This combination affords several 
advantages: 1) more efficient model based 
estimates when the model is true, 2) consistent 
estimates of the variances for the model based 
estimates, 3) resistance of the model assisted 
estimates to model failure, 4) consistence 
estimates of the variance of the model assisted 
estimates, 5) estimates of bias for the model 
based estimates, and 6) consistent estimates of 
the variance of the bias estimates. With this 
array of information, analysts will be in an 
improved position to analyze imputed data sets 
effectively. 

1. INTRODUCTION 
In surveys subject to nonresponse, imputation 

has often been used to complete the data set for 
purposes of subsequent estimation and other 
analysis. Rubin (1978, 1987) proposed multiple 
imputation (MI) as a means to assess the effect 
on uncertainty associated with estimates using 
imputed data. In addition, MI typically yields 
more efficient estimates than single imputation 
(Rubin 1987) 

A second use of MI was suggested: as a 
strategy of estimation and inference for the 
problem of double sampling. In this setting, a 

probability sample or subsample is drawn from 
a population or larger original sample. 
Characteristics directly determined only for 
elements of the subsample are then imputed to 
the other elements of the original population or 
sample, generally using covariate information 
available for all of the elements. Because of the 
scale of imputation involved, such an approach 
has also been called mass imputation. For 
example, such an approach was used to impute 
1980 industry and occupation codes to public 
use files from the 1970 decennial census on the 
basis of a doubly coded sample (Clogg et. al. 
1991). This approach views the problem of 
inference to a larger sample or population as one 
of estimating the missing data for unobserved 
cases. 

Fay (1991, 1992, 1994)showed simple 
examples in which the MI variance estimator is 
inconsistent for direct estimators that analysts 
are likely to use in the analysis of such data sets. 
In each of the examples, the imputer selects a 
correct but parsimonious predictive model for 
the imputation. The analyst attempts to 
investigate relationships that the imputer did not 
reflect in the imputation model and obtains from 
MI an overestimate of the variance. In fact, 
these problems with MI are particularly 
pronounced for high missing data rates, Such as 
80 percent, compared to the consequences for 
less extreme rates, such as 20 or 30 percent (Fay 
1994). Consequently, these findings recommend 
particular attention to the implications for mass 
imputation. 

In a recent discussion, Binder (1993) 
characterized the examples as a "blue 
eyes/brown eyes" problem, in which an imputer 
omits consideration of eye color in imputing 
other missing characteristics, and yet an analyst 
wishes to investigate effects of eye color with 
the imputed data set. As Fay (1994) illustrated 
by example, MI inference produces excessively 
wide confidence intervals for tests of an effect of 
eye color effect for mass imputation, if no color 
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effect is actually present. Under the same 
conditions, fractionally weighted imputation 
(FWI) (Fay 1994) and an extension of the 
variance estimator proposed by Rao and Shao 
(1992) provide consistent variance estimates. 
This combination does not provide a complete 
solution to the "blue eyes/brown eyes" problem, 
however, since if a real effect of eye color is in 
fact present in the population, the bias in the 
estimated effect would be an important concern. 

Meng (1994) recently discussed the "blue 
eyes/brown eyes" problem from the MI 
perspective, making a distinction between 
"congenial" analyses in which the analyst's 
analysis is compatible with the imputer's 
assumptions and "uncongenial" analyses on 
which the counterexamples are based. 

This article addresses the "blue eyes/brown 
eyes" problem in the context of mass imputation. 
The solution stems not from an alternative 
imputation strategy but instead model assisted 
estimators that work with the imputed values. 
Basically, the customary analysis of imputed 
data sets has been model based, since the 
estimators treats the imputed values as if they 
were observed. The situation with MI is 
essentially similar, since the MI estimator 
averages estimates from multiple separate 
analyses, each of which employs the imputed 
values as if they were observed. Consequently, 
the estimators are potentially biased from model 
misspecification, even when the probability of 
inclusion, that is, the sampling and response 
mechanisms, are entirely known. 

An alternative estimation strategy, based on 
model assisted estimation, represents a more 
complete solution to the "blue eyes/brown eyes" 
problem. The general reference for this 
approach, Stimdal, Swensson, and Wretman 
(1992), has been preceded by a series of related 
work, including Cassel, Stirndal, and Wretman, 
(1976, 1977), Sttmdal (1984), and Stirndal and 
Hidiriglou (1989). This article combines the 
general features of the model assisted approach 
with extensions of results for the Rao-Shao 
variance estimator applied to FWI. 

Section 2 reviews the Rao-Shao variance 
estimator for simple random sampling, 
emphasizing its ability to capture the variances 
and covariances for the separate components of 

FWI. Section 3 extends the results to an 
additional component, imputations for the 
observed cases, and discusses the class of model 
assisted estimators that result. Section 4 
presents simple Monte Carlo illustrations of the 
performance of the model assisted estimators 
compared to model based versions. Section 5 
concludes with a summary of the potential 
implications of this approach and future 
extensions. 

2. RAO AND SHAO: JACKKNIFE 
VARIANCE ESTIMATION 

FOR THE HOT DECK 
Rao and Shao (1992) modified the standard 

jackknife variance to account for the variability 
introduced through use of the hot deck. For 
simplicity, this section describes the case of a 
hot deck with a single imputation cell, although 
the results extend to an arbitrary number of cells. 
The results also extend to complex multi-stage 
samples when the sampling variance for 
estimators applied to complete data are 
consistently estimated from the standard 
variance estimators for sampling with 
replacement at the first stage. 

Suppose a simple random sample, yj , j = 
1,...,n, of size n is drawn from an infinite (or 
extremely large) population. Suppose further 
that the values of yj are observed only for a 
subset of r respondents, j e A,. The hot deck 

provides an imputed value, 3,,,', for each 

nonrespondent j e A~. Suppose further that 
the data are missing at random (e.g., Rubin 
1978). 

The "hot deck" must conform to specified 
conditions (Rao and Shao 1992). For example, 
in the simplest ease, a single imputation class 
and a simple random sampling design, 
imputations are made through simple random 
sampling with replacement from the donors. For 
multi-stage stratified sampling, which may lead 
to differential probabilities of selection and 
associated weights, the authors consider the 
selection of "donors" with probabilities 
proportional to their respective survey weights 
within the imputation class. Estimates are 
produced from the singly imputed data set in the 
normal manner, that is, by using the imputed 
values as if they were observed for purposes of 
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estimation. The analysis is modified at the point 
of variance estimation to reflect the uncertainty 
due to missing data. 

The estimator of the mean may be written: 

where ~,. is the respondent mean and y-~ is the 

mean of the imputed values. 
The standard jackknife variance formula is: 

/ l - 1  n 

v:o) . . . .  E O7(:~)(-])-Y(:~)) 2 (2.2) 
n 1-1 

where 

1 

(n- 1 ) (n~'~) - yj) i f j  e A, (2.3) 

(n-l) 

represents the mean of y computed by omitting 
observation j. Thus, (2.3) treats imputed values 
as if they were observed, and may appropriately 
be called "naive" for doing so. Rao and Shao 
modify (2.2) and (2.3) by: 

n - 1  n 
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and where ~,(-j)- (ry", - yj)/(r- 1). In other 

words, if j e A,,,, then (2.5) is computed in 

the same way as (2.3), by omitting the imputed 
value for j. If j e A,, then yj is omitted and 
the imputed values are adjusted to reflect y/s 
influence on the mean of the imputed values. 
Rao and Shao establish the consistency of this 
variance estimator, both for the single 
imputation class, as shown, and for multiple 
classes. 

This approach can be extended to fractionally 
weighted imputation (Fay 1994) for m > 1. For 
each j e A,,,, m independent selections from 
the hot deck may be made, giving m imputed 
values y f ,  ~ -- 1,...,m. Each imputation is given 

weight 1/m times the original survey weight. 
The weighted observations may then be used in 
the calculation of (2.1), giving the estimator 
Y~O" Expressions (2.4) and (2.5) provide a 

consistent estimator of the variance under the 
same conditions as the hot deck. For any given 
m, fractionally weighted imputations generally 
provide estimates with lower variance than 
multiple imputation (Fay 1994). 

3. MODEL ASSISTED ANALYSIS OF 
IMPUTED DATA SETS 

Consider a domain d for which an analyst 
requires an estimate of the mean. The usual 
approach is to compute (2.1) from observed Yl 

and imputed yj', j e Ad, the observed count in 

the domain, nd, and number of respondents, rd. 
The Rao-Shao variance estimator (2.4) and (2.5) 
may be used for the resulting estimator, :~a(~), 

but generally the estimator will be biased unless 
the means within imputation cells within the 
domain are the same as the corresponding 
imputation cell means over all domains. If the 
choice of imputation cells is highly effective (the 
implicit assumption of MI as well), the resulting 
variance estimator is satisfactory for inferences 
about the domain mean. 

Using the same hot deck to compute 
fractionally weighted imputations, y.~., ~ = 

1,...,m, for j e A~, enables application of 
model assisted estimation. Differences within 
domain d between the imputed values and the 
observed values for j e A, may be used as an 
estimate of the bias of the model based 
imputations. Using the bias estimates either in 
the form of a difference estimator: 
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or ratio estimator: 

may be employed, where :7,~, represents a model 

based estimator, such as (2.1) or its FWI 
extension, and :Yw represents a model assisted 

estimator based on it. 

4. A COMPARISON OF IMPUTATION 
PROCEDURES AND 

VARIANCE ESTIMATORS 
Following the examples in Fay (1994), we 

consider imputation for a problem with two 
imputation classes, s and t, and domains, a and 
b, cutting across the imputation classes. In the 
Monte Carlo study, the imputation class variable 
and tabulation variable were independently 
drawn from Bernoulli with prob -- .5, so that 
they divide the population into 4 cells with equal 
expected sample sizes. The probability of 
response, p, was set at .2, corresponding to mass 
imputation. 

To illustrate the consequences of bias in 
imputation, cell means were assigned to vary 
more substantially with the imputation classes s 
and t, than domains, a and b. The complete 
assignment of means was 1.5 to the cell (s, a), .5 
to (s, b),-.5 to (t, a), and -1.5 to (t, b). 

Table 1 shows the results, including the 
average length of confidence intervals, for the 
grand mean. Mass imputation produces an 
estimate with considerably lower variance than 
analysis of the observed data only, and 
inferences are satisfactory for all alternatives. 
Table 1 also includes the properties of the 
estimated bias from the model assisted approach. 
The confidence intervals are quite short. 

Table 2 presents results for an imputation cell. 
In this case, mass imputation does not improve 
on the information present in the observed data. 
Table 3 shows the results for a domain, a, whose 
estimates are affected by bias in the imputation. 
Only the model assisted estimators and analysis 
of the observed data only behave acceptably 

under such conditions -- the coverage of 
confidence intervals for other estimators is so 
poor because of bias. Obviously, the results 
make an extremely strong case for the model 
assisted perspective under these or similar 
circumstances. 

The last entry in Table 3, showing the 
performance of the bias estimator, suggests that 
this may be an effective tool for assessing 
potential bias in domain estimates. 

5. CONCLUDING REMARKS 
In applications to mass imputation, model 

based estimation carries with it the potential 
effects of model misspecification. The model 
assisted approach offers the analyst tools to 
assess the potential effect of error. If the model 
assisted analysis indicates that the model based 
estimates have negligible bias, then the 
simplicity of the model based estimates may 
favor their continued use. In the presence of 
significant model bias, however, the model 
assisted estimates become attractive alternatives. 

The author is Senior Mathematical Statistician 
at the U.S. Bureau of the Census, Washington, 
DC 20233. This article reports results of 
research undertaken by a staff member of the 
Census Bureau. The views expressed are 
attributable to the author and do not necessarily 
reflect those of the Census Bureau. The author 
thanks Gregg Diffendal and Philip Gbur for 
helpful comments. 
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Table 1 Performance of Estimators and Estimators of Their Variances, for the 

Estimator 

Observed only 

FWI 

Hot deck 

FWI~. (diff. est.) 

HDm~ (diff. est.) 

MI, MI var 

Bias (diff. est.) 

Overall Mean, p = .2, n = 400, m = 5 

Act. Var. ~ % Coy 

.0436 .0446 94.8 .413 

.0221 .0224 95.1 .292 

.0242 .0243 94.9 .305 

.0243 .0243 94.9 .305 

.0265 .0263 94.9 .317 

.0240 .0233 94.0 .331 

.0020 .0020 94.9 .086 

Table 2 Performance of Estimators and Estimators of Their Variances, for the 
Mean of an Imputation Class, p -- .2, n = 400, m = 5 

i , , , ,  

Estimator Act. V ar. ~ % Cov ~kLrdl 

Observed only .0320 .0326 94.7 .350 

FWI .0329 .0336 94.7 .355 

Hot deck .0370 .0374 94.6 .376 

FWI~. (diff. est.) .0373 .0374 94.0 .375 

HD,~ (diff. est.) .0413 .0413 94.2 .395 

MI, MI var .0367 .0357 93.8 .441 

Bias (diff. est.) .0040 .0039 95.3 .121 

Table 3 Performance of Estimators and Estimators of Their Variances, for the 

Estimator 

Observed only 

FWI 

Hot deck 

FWIma (diff. est.) 

I-IDma (diff. est.) 

MI, MI var 

Bias (diff. est.) 

Mean of a Cross-Class not Used in Imputation, p = .2, n --- 400, m - 5 

Act. Var. ~ % Cov 

.0828 .0852 94.6 .569 

.0291 .0290 34.9 .333 

.0331 .0329 39.5 .355 

.0470 .0473 94.9 .425 

.0509 .0512 95.0 .442 

.0313 .0350 47.3 .392 

.0139 .0142 94.6 .232 
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