
E X P L O R I N G  C R O S S - M A T C H  E S T I M A T O R S  W I T H  M U L T I P L Y - I M P U T E D  DATA SETS 

John Barnard, Xiao-Li Meng, The University of Chicago 

John Barnard, Department of Statistics, The University of Chicago, 5734 University Avenue, Chicago, IL 60637 

Key  Words :  
tion. 

Splitting Scheme, Crossed Imputa- 

A b s t r a c t  

Kong, Liu, and Wong (1994) show through theoreti- 
cal derivations that cross-match estimators could be 
very useful for reducing Monte-Carlo error. They 
indicate that a potentially fruitful arena for cross- 
match estimators is multiple imputation. We ex- 
plore this use of cross-match estimators under re- 
strictive conditions that facilitate analytical calcula- 
tions essential for initial theoretical insight. 

1 I n t r o d u c t i o n  

Multiple imputation (MI) (Rubin, 1987) has 
proven to be a useful mode of inference in the pres- 
ence of missing data, especially in the context of 
public-use data files (e.g., Meng, 1994; Rubin, 1995). 
The basic aim of multiple imputation is to allow 
general users, who typically have little information 
about the nonresponse mechanism, to reach valid 
statistical inferences in the presence of nonresponse 
using only valid complete-data analysis techniques. 
The standard MI methodology reviewed in Section 
2 meets this aim under general conditions (see Ru- 
bin, 1987; Meng, 1994; Rubin, 1995). In this paper, 
we investigate the possibility of improving the effi- 
ciency of standard MI estimators when there exists 
(approximate) independence among imputed values 
within each imputation. 

Coupling Bayesian derivations with frequentist 
evaluation is a powerful means of obtaining statisti- 
cal procedures with general applicability. This cou- 
pling is central to the multiple-imputation approach. 
Rubin (1987), in his seminal book on multiple im- 
putation, first gives the Bayesian underpinnings of 
the MI methodology, and then proceeds to evaluate 
the methodology from a randomization-based per- 
spective, demonstrating the frequentist validity of 
MI inference under general settings. Further devel- 
opment along this line is given in Meng (1994) and 
Rubin (1995). We followed this path in develop- 
ing our extensions to the standard MI estimators. 
Here we present some of the underlying Bayesian 

theory and leave the randomization-based evalua- 
tion to subsequent research. Also, we will focus 
only on cases where the estimand of interest is a 
scalar quantity. Inference about multicomponent es- 
timands, the problem in which our extension has 
potential to provide great gains, will be presented in 
later work. 

2 S t a n d a r d  M I  M e t h o d o l o g y  

Let Y be the complete data, i.e., what we would 
observe in the absence of any missing data; let ]fobs 

be the observed segment of Y, and Ymis be the miss- 
ing segment, i.e., Y = (Ymis, Yobs). We assume that 
with complete data, valid inference about a quantity 
Q, possibly a model parameter or a finite population 
characteristic, would be based on the standard large 
sample statement 

(1) (Q - (~) --~ N(0, U), 

where (~ - (~(Ymis, Yobs) is an efficient estimate of 
Q, and U = U(Ymis, Yobs) is its associated variance. 
Statement (1) has a dual interpretation: Frequen- 
tists can interpret it as saying that the sampling dis- 

^ 

tribution of Q is approximately normal with mean 
Q and variance U, while Bayesians can view it as 
the usual large-sample normal approximation to the 
posterior of Q, with posterior mean (~ and posterior 
variance U. 

The basic idea of multiple imputation is to fill in 
the missing data multiple times with values drawn 
from some distribution that predicts the missing val- 
ues given Yobs and other available information. Each 
draw of Ymis is called an imputation (or imputation 
vector). We denote an imputation by z. Given 
m independent (conditional on Yobs) imputations 
of Ymis, z 1 through z m, an analyst calculates the 
completed-data statistics (~ and U for each of the m 
completed-data sets, Yt = (z ~, Yobs), g = 1 , . . . ,  m. 

Let Sm - ~(~.~,U.l, ~ - - l , . . . , m ~  be the set of 
% , J  

the resulting 2m completed-data statistics, where 
(~.l - (~(z l, Yob~) and U.l -- U(z l, Yob.,). Secondly, 
the analyst computes the combined statistic 

m 
l = l  
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and its associated variance 

- 1 
T m - U m + ( l + - - ) S m ,  

m 

where 

- - - -  U , l  
m 

t = l  

measures the within-imputation variability, 

B m  - - "  

1 m )2 

m -  1 ~ - ~ ( Q , l -  Qm 
£=1 

measures the between-imputation variability, and 
1 the adjustment (1 + N) is due to the finite num- 

ber of imputations. Inference about Q is based on 
the statement 

(2) ( Q -  Ore) ~ 

where v - ( m -  1)(1 + rml) 2, and rm - (1 + 
_ 

m -  1)B,~/U,~ estimates the odds of the fraction of 
missing information. 

The justification of these procedures is given in 
Rubin (1987) and is most easily established using 
Bayesian calculations. When the imputations are 
draws from a posterior predictive distribution of 
Ymi.~, i.e., the imputations are generated under an 
explicit Bayesian model, the resulting inference is 
called repeated-imputation inference (distinguishing 
it from the more general multiple-imputation infer- 
ence; see Meng, 1994). Assuming the imputations 
are repeated imputations under a "proper" model, 
Rubin (1987) uses (1) and large-sample approxima- 
tions to obtain 

(3) (Q I Yob~)-~ N((~)oo, 0oo + Boo), 

where (~oo - lim Qrn, Boo - lim Bin, and 0oo - 
m ' ~  OO m - ' ~  OO _ 

lim Urn. The key observation is that  the approxi- 
~ - - . .  OO 

mate posterior of Q depends only on 0oo, Boo). 
In other words, (3) is equivalent to 

(4) (Q I soo) ~ N(Qoo, Uoo + Boo), 

where Soo is Sm when m is infinite. However, when 
the number of imputations is finite (typically m is 
less than ten), one observes S,~. The loss of in- 
formation from replacing Soo by Sm can be sub- 
stantial when m is very small (e.g., m < 3), par- 
ticularly when the fraction of missing information, 
Boo/(0oo + Boo), is large. The loss of information 

about the between-imputation variance Boo is a par- 
ticularly hard problem to handle, just as it is gen- 
erally difficult to estimate a variance based on very 
few observations. 

Rubin (1987) derived the conditional distribution 
of Q given Sm and used the t-approximation (2) to 
this distribution to make inference about Q. In the 
next two sections we present an alternative proce- 
dure that at tempts to reduce the information loss 
that results from replacing Soo with S,~. The gain 
in information comes from assuming a certain kind of 
conditional independence among sub-vectors within 
each imputation vector z. 

3 C r o s s - M a t c h  E s t i m a t o r s  

In this section we examine a class of estimators 
called cross-match (CM) estimators by Kong, Liu, 
and Wong (1994). In the multiple-imputation set- 
ting, a CM estimator is constructed from the given 
imputations and a splitting scheme 8k. 

Spl i t t ing  S c h e m e  8k 

A splitting scheme Sk is a scheme for dividing a 
vector z into k mutually exclusive (but not neces- 
sarily contiguous) sub-vectors, denoting the i th sub- 
vector by zi, such that 

z ( & )  - , 

where z(Sk) possibly differs from the original z by a 
permutation of its components. The definition and 
number of the sub-vectors depends upon the choice 
of splitting scheme. For example, if we have two 
imputations of four ages where the sex of the four 
subjects is known, we could split each imputat ion 
into two sub-vectors (k = 2), zl and z2, according 
to the sex of the subjects. 

subjects z 1 z 2 sex 
1 61 59 M 
2 69 65 F 
3 58 60 M 
4 72 71 F 

Zl 

Z2 

Z 1 Z 2 s e x  

61 59 M 
58 60 M 
69 65 F 
72 71 F 

Cross ing  S u b - V e c t o r s  

Originally we started with m imputat ion vectors, 
indexed from 1 to m. After splitting each imputat ion 
vector into k sub-vectors according to the splitting 
scheme Sk, we are left with a total of m x k sub- 
vectors. By crossing the sub-vectors, i.e., exchang- 
ing a sub-vector from an imputat ion with the cor- 
responding sub-vector from a different imputation,  
we can form m k crossed imputations, which include 
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the original m independent imputations. Denoting 
ti the i th sub-vector from t h e  £~h imputation by z i , a 

crossed imputation z t can be written as 

tk z(tl ,tk) z t - ( z ~ ' , . . . , z  k ) . . . . .  , 

where £ -  ( ~ 1 , . . . ,  ~k) E ]~, and 

] ~ -  { t -  (el,... ,~k)" 1 < gi < m, 1 < i < k} 

is the index set. When the k indices in t are 
the same, the corresponding imputation is one of 
the original m imputations (e.g., t = (1, 1 , . . . ,  1)). 
Crossing the four sub-vectors obtained in the previ- 
ous examples gives 

Zl 

Z2 

crossed imputations 

z (1,1) z (1,2) z (2,1) z (2,2) sex 

61 61 59 59 M 
58 58 60 60 M 
69 65 69 65 F 
72 71- 72 71 F 

C a l c u l a t i n g  a C r o s s - M a t c h  E s t i m a t e  

A cross-match estimator for Q is defined as 

(5) 
1 1 m 

t l  ,... ,tk 
¢~.(t,,... ,tk), 

where IlK I - m k is the cardinality of ]K, and 

" "'Z I t  gk O.t  -- O( zl Yobs) O(( I , ' " ,  z~: ), Yobs). 

The procedure for calculating a CM estimate QK 
given a splitting scheme Sk and m imputations is as 
follows: 

1. Split each imputation vector z into k sub- 
vectors (Zl , . . .  ,zk) according to the splitting 
scheme ,Sk; 

£ 
2. For each t E IK, treat Y = ( z  t,Yob~) as the 

complete data and compute Q.t = Q(yt ) ;  

3. Calculate OR according to (5). 

Similarly, we can get a CM estimate Ug of the 
within-imputation variance. These computations 
are easily performed using a computer with a simple 
routine that keeps track of the crossed imputations. 
Note that Qm and Urn are a special case of Qg and 
Ug, respectively, with k -  1 (i.e., no splitting). 

Var i ance  U n d e r  the  I m p u t a t i o n  M o d e l  

Conditional on Yobs, Q is a function of the random 
variable z, the imputation variable. We make the vi- 
tal assumption that a splitting scheme can be found 
such that the components or sub-vectors of z are 
conditionally independent (conditional on Yob~), i.e., 
the zi's are conditionally independent. Under this 
independence assumption, following the Efron-Stein 
decomposition for a function of independent vari- 
ables (Efron and Stein, 1981), Q can be expressed 
a,s 

(6) 
k 

Q(z) - Ho + E Hi(zi) + E gi,,i2(zi,, zi2) + . .. 
i=1 i ,<i2 

- 

where cg C_ {1 , . . .  ,k}, z¢ - (zi;i E ¢.), and 

H0 - E(0(z)  I Yob~) 

Hi(zi) -- E(0(z)I zi, Yobs) -- H0, 

Hi,,i2(zi,, zi2) -- E(0(z)I zi,, zi~, Yobs) - Hi, (zi,) - 

- -  Hi2 (zi2) + H o ,  

etc. The notation ~-'~¢ means to sum over all subsets 
of { 1 , . . .  , k}. Since all of the H's  are uncorrelated, 

using (6) we get the variance expression 

k 

(7) V(Q(z) I Yobs) -- E V(Hi I Yobs) + 
i--1 

E V(Hi~,i2 I Yob~)+. . .  
ix<i2 

= E  he, 
¢#¢ 

where h~ = V(H¢(z¢) I Yob~ ). Kong et al (1994) 
proved using (7) that 

(8) 
- < v(o,  I Yob )- 

¢#¢ ¢#¢ 

This result led us to pursue the use of cross-match 
estimators in the multiple-imputation setting with 
the hope of reducing the information loss that re- 
sults from replacing Soo by S~. The crucial issue 
here is whether we can find a splitting scheme that 
satisfies the independence assumption. We do not 
expect such an assumption to hold exactly in prac- 
tice, but we do believe that it is often possible to 
find a splitting scheme that achieves approximate 
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independence, especially when the size of the ]fobs 

is large, the typical case with public-use data files. 
For example, splitting on some demographic vari- 
ables, such as sex (as in our example), seems likely 
to produce approximate independence in many data 
sets. When the independence holds only approx- 
imately, choosing between Q~ and (~,~ becomes a 
bias-variance trade off. We expect that the mean- 
squared error of Q~ is substantially less than that of 
Qm when m is small, the fraction of missing infor- 
mation is high, and Q is highly non-linear in z (e.g., 
p-values). Evidence of this sort will be presented in 
later work. Here we only develop some of the theory 
in order to gain insight into our extensions. 

4 Underlying Bayesian Theory 

Under the Bayesian paradigm, to make inference 
about Q we need to derive the posterior of Q given 
the data. In Section 2, the "data" consisted of the 
m pairs of completed-data estimates and their as- 
sociated variances. In the CM setting, the "data" 
consist of the m k pairs of completed-data estimates 
and variances, S K -  {Q,.t, U.t,t  e IK}. We wish to 
calculate the conditional distribution of Q given S~. 

In this section we derive the conditional distribu- 
tion of Q given S~ assuming that (~ is an additive 
function of the k sub-vectors, z l , . . . ,  zk, i.e., assum- 
ing 

k 

i - 1  

treating Yob~ as fixed. This additivity assumption 
is made for theoretical simplification and will be re- 
laxed in subsequent work, as it restricts the utility 
of the CM estimators (i.e., ( ~  - (~m). Both the 
additivity of (~ and the independence of the sub- 
vectors depend upon the choice of splitting scheme 
Sk; (~ may be additive under one splitting scheme 
and not additive under another. Note that additive 
functions are more general than linear functions (in 
z). For example, the difference in quantiles between 
males and females is an additive function if we split 
by sex, but it is not linear. We call the functions 
(~{i}(.) sub-functions, as (~{q(.) only depends upon 
the ith sub-vector zi (again treating Yob~ as fixed). 

Our plan of attack follows that of Rubin's (1987) 
for approximating [Q I S,~] (using [] to denote dis- 
tribution). First derive the conditional distribution 

_ 

of (Q¢~, Uo~) given s~  (instead of Sin) and Boo, then 
combine that result with (4) and the conditional dis- 
tribution of Boo given SK. As in Rubin (1987), we 

_ 

treat (Q¢¢, Boo, U~) as the set of parameters (thus 
assigning them priors), and treat S~ as the data. 

Sampling Distribution of S~ Given Yobs 

The first task is to specify the sampling distribu- 
tion of the m k pairs (Q,t, U,t) given Yobs. In the 
standard MI setting, each pair is an i.i.d, draw of 
( ~  and 0 ~ .  In the CM setting the m k pairs are 
identically distributed but not independent. The 
marginal distributions of Q,t and U,I given Yobs are 
the same as those given in Rubin (1987, Chapter 3), 

(10) (Q,, I Yob ) ~ N(0 , Boo), 
_ 

(11) (u** I Y ohm) ~ [Uoo, << Boo], 

where [A, << C] means the distribution is centered 
around A with lower order of variability than C. 

Consider the variance and covariance structure of 
^ 

the m k Q,t s, which follows easily from the additiv- 
ity assumption (9) and the variance decomposition 
(7)" 

k 

(12) V(Q,,  ] Yob~)- Boo -- ~ hi, 
i--1 

and 

(13) Coy(Q,,, 0, , ,  I Yobs)  - -  h,, 

where ~ - { i ' g i  - g~}. The last equality in (12) 
follows because under the additivity assumption, hi 
is the between-imputation variance of the ith sub- 
function, (~{i}. 

To specify the joint distribution of the Q,t,  t E IN, 
w e  u s e  

k 

(14) Q , t -  Ho-t- Z H[' ,  
i = 1  

where, 

H I ' -  (~{i}(z/ ' ) -  E[Q{*}(z[') I Yob~]. 

The representation follows from the additivity as- 
sumption and the Efron-Stein decomposition. Then, 
in parallel to Rubin's assumption about the condi- 
tional distribution of (~,e, we assume that HI ~ ,.~ 
N(O, hi), which is reasonable when k is not too large. 
Combining the normality and the independence of 
the H/~'s, we see that the joint distribution of the 
(~,t's is multivariate normal with mean (~oolmk and 
variance-covariance structure given by (12)and (13). 

The joint distribution of the U,t's is more difficult 
to specify precisely (or even imprecisely), but fortu- 
nately, a joint specification is not required because 
of the lower order variability assumption in (11). 
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Condi t iona l  D i s t r i b u t i o n  of (Qoo,Uoo) G i v e n  
Sg and  Boo 

Accepting the sampling distributions given in the 
previous section, it is straightforward to obtain the 
conditional distribution for (Qoo, Uoo) given Sg and 
Boo. First, if the prior distribution of Qoo given Boo 
is proportional to a constant, then 

(15) (Qoo I s~¢, B ~ ) ~  N(Om, Boo). 
m 

Note that this is the same as [Qoo [ Sin, Boo] given in 
(3.3.5) of Rubin (1987). This is not surprising since 
Q K -  (~m under the additivity assumption. 

Following Rubin's (1987) assumption (11), we also 
have 

(16) (Uoo I sr , Boo)~ << Boo~m]. 

C o n d i t i o n a l  D i s t r i b u t i o n  of Q Given S~¢ a n d  

Boo 

Combining the results of the previous section and 
(4) yields an approximation to the conditional dis- 
tribution of Q given SK and Boo. Expression (16) 
implies that in (4) Uoo can be replaced by Ur~ to give 

(17) (Q I S~¢, 0oo, Boo)~ N(~)oo, UK + Boo). 

Combining expression (15) and (17) yields 

(lS) 
(Q[SK, B~) ~ N (Qm,UK+ Boo (1 + m - l ) ) .  

This is the same result as (_3.3.7)in Rubin (1987) 
for [Q [ Sin, Boo] if Um - UK (U~¢ is slightly more 
efficient than Urn). Hence, conditional on Boo, be- 
cause of the additivity assumption, using S~¢ has not 
helped us obtain sharper inferences about Q relative 
to the standard Bayesian MI inference. However, as 
we shall see in the next section, the crossed data S~ 
does contain extra information beyond that in Sm 
about the unknown Boo. 

C o n d i t i o n a l  D i s t r i b u t i o n  of Boo Given SK 

Since under the additivity assumption Boo = 
k 

~ i = l  hi, the conditional distribution of Boo given 
SK depends on the joint conditional distribution of 
the hi's. If we let the hi, i - 1 , . . . ,  k, be apriori in- 
dependent and be distributed aibix~ 2, then the hi's 
are aposteriori independent and 

(19) (hi I S~) -~ [ ( m -  1)hi + aibi] X~2_l+b,, 

where h i -  [m~'-l(m- 1)]-ISSi, 

SSi -- mk-I Z (O~} -- Q{~})2 , 
l = l  

and 
r r t  

= £ 
m 

l - - 1  

The sum of squares SSi,i = 1 , . . . ,  k, can be com- 
puted by creating an ANOVA table using the Q.t 's 
as the response and the t 's as the explanatory vari- 
ables. By doing this, we avoid having to perform cal- 
culations directly on the m x k sub-functions. Tak- 
ing bi as zero in the density of aibiXb~ 2 results in the 
noninformative and improper prior h~ -1 and makes 
(hi [ S~¢) ,~ ( m -  1)hi x ~ l ,  which is a direct gener- 
alization of Rubin's (1987) result for [Boo ]Sm]. We 
consider this class of priors for the hi's because it 
is conjugate (making calculations easier) and quite 
flexible. The use of informative priors (i.e., bi > 0) 
is important in calibrating our Bayesian procedures. 
We will later adjust the bi's to construct procedures 
with good frequentist properties. From (19) and the 
additivity assumption we get 

(20) 
k 

(Boo I ~ 1)hi + aibi] X~n2_l+b,, 
4=1 

where all of the inverse-chi-squared variables are mu- 
tually independent. 

C o n d i t i o n a l  D i s t r i b u t i o n  o f  Q G i v e n  S ~  

Combining the results in (18) and in (20) gives 

(21) (Q I sK)~ Qm + 

- f  . . . . .  .A/', 
i - ' 1  Xrn-l+bi 

where Af is a standard normal random variable, and 
all of the variables are mutually independent. An 
alternative expression for (Q [ SK) exists that is less 
direct than (21) but more intuitive. Following (18) 
and the fact that a sum of independent normal ran- 
dom variables is also a normal random variable, we 
have the random variable decomposition 

(22) (Q [ S ~ , h l , . . . , h k )  ~ Or~ + 

Xo + 
m 

i=l 

where all of the Af/'s are independent. Combining 
this result with (19) gives 

(23) (O i s=)~ 0= + + 
/ 

i 1 f i  i (  ml ) ]hWaib im 1 + - -  T.~-l+b, - 1 + bi ' 
m i = 1  
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where q/-d is a standard t random variable with d de- 
grees of freedom, and all variables are independent. 
Expression (23) is more useful for calculating the 
moments of Q given S~ while (21) is more useful for 
calculating the conditional density of Q. 

When k - 1, the case of no splitting, (21) becomes 

( Q I S ~ ) ~ Q ~ +  

0m + (1 + ~ )  2 X, 
X m - l T b l  

or alternatively, (23) becomes 

(Q I s~) ~0~ + X 0 ~ +  

i i 1 ( m -  1)Bin + albl 
1 + -  "/'~ l+b~ • 

m m - l + b l  

Taking bl = 0 leads to the conditional distribution 
found in Rubin (1987, Chapter 3), 

(24) (Q I s~) ~ ~)~ + N0 ~ + 

i l + L~m_~ ~/Bm, 
m 

which was derived under it(Boo) oc 1~Boo. Direct 
comparisons of (24) with (23), however, are prob- 
lematic because the assignment of priors is not com- 
patible. For example, even when taking bi = 0, i = 
1 , . . . ,  k, in (23), the priors ~r(hi) ~ hi -1 used there 

k k , do not imply ~r(~-~'~i= 1 hi) (x (~i=1 hi) -1 the prior 
used in (24). However, our ultimate goal is to com- 
pare the frequentist properties of these Bayesianly 
derived procedures. We hope that the extra infor- 
mation in S~ relative to Sin, when coupled with the 
flexibility in our formulation introduced via the ad- 
ditional prior parameters (i.e., the ai's and bi's), can 
lead to procedures with better frequentist proper- 

ties, at least in some cases. We also expect that 
the basic results established will be useful for the 
more general situation when (~ depends on z through 
Q{i}(zi), i -  1, . . .  ,k (e.g., p-values). 
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