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1. INTRODUCTION 

The nearest neighbour (NN) imputation method is 

used to supply substitutes for missing data in many 

surveys conducted at Statistics Canada. This trend will 

continue since the availability of a software such as the 

Generalized Edit and Imputation System (GELS) 

provides a relatively simple means of performing 

nearest neighbour imputation. Since an NN imputed 

value comes from a donor (one of the respondents), it 

is an actually occurring value, not a constructed value 

as in regression imputation. An NN imputed value may 

not be a perfect substitute, but is unlikely to be a 

nonsensical value. Normally, NN imputation yields 

point estimates with small or negligible bias, assuming 

that a linear relationship exists between the variable of 

interest y and the concomitant variable x used for 

nearest neighbour identification. 

When the survey estimate is calculated in part 

from imputed values, it is not trivial matter to produce 

a valid estimate of its variance. It is well known that 

the standard complete data variance estimator severely 

underestimates the true variance when applied to data 

with imputed values. In recent years, considerable 

attention has been given to this problem when single 

value imputation is used. For example, S~imdal (1990), 

Rao and Shao (1992), Rao and Sitter (1992), Kovar 

and Chen (1994), Lee, Rancourt and S~imdal (1994). 

These attempts were very successful for regression and 

mean imputation but for NN imputation suggested 

solutionshave been ad hoc. In this paper, we provide a 

more satisfactory solution to the variance estimation 

problem for NN imputation. 

There are basically three approaches to variance 

estimation in the presence of imputation. The oldest 

and probably best known method is multiple 

imputation (Rubin, 1977, 1987). Another is the 

model-assisted approach (S~irndal, 1990) and the third 

method is based on the jackknife technique (Rao, 

1992). All the three approaches were tried for NN 

imputation by different authors with moderate success. 

With multiple imputation, there is some difficulty to 

define a "proper multiple imputation" for NN 

imputation and thus, the variance is underestimated 

(see Lee, Rancourt and S~imdal, 1994). These authors 

also tried the model-assisted approach pretending that 

formulae for ratio imputation would be applicable to 

NN imputation as well. This worked better than the 

multiple imputation, but the negative bias was still 

present and nonnegligible (see Lee et al., 1994). The 

jackknife technique has been used with some success 

for variance estimation when the data contain 

imputations. However, to produce the input for the 

jackknife formula (the estimate recalculated after 

deletion of one observation), the imputed values must 

first be adjusted. The appropriate adjustment depends 

on the particular imputation method used. In particular, 

a difficulty with the jackknife for NN imputation has 

been that no entirely satisfactory adjustment has yet 

been found. Kovar and Chen (1994) examined the 

jackknife technique for NN imputation using a less 

than ideal adjustment, namely, with the adjustment 

appropriate for ratio imputation. This method 

substantially reduced the bias of the standard complete 

data variance estimator but could not eliminate it. 

In this paper we develop an improved variance 

estimation technique for NN imputation. The method is 

model-assisted and gives correct variance estimation 

when the variable of interest y and the concomitant 

variable x are related with a linear regression through 

the origin. We obtain simple explicit estimators for the 

two components of the variance, that is, the sampling 

variance and the imputation variance. The theoretical 

results are presented in Section 2. In Section 3 we 

report the results of a Monte Carlo experiment which 

888 



confirms that the method works well for a population 

with regression through the origin. Section 4 presents 

the conclusions. 

2. MODEL-ASSISTED APPROACH 

Let U-{1 .... ,k, .... N}be the index set of the 

population, and denoted by s a simple random sample 

without replacement (SRSWOR) of size n drawn from 

U. Let also r of size m and o of size l be respectively 

the sets of respondents and nonrespondents. Therefore, 

s- -rUo.  The variable of interest is denoted by y and we 

assume that yk>0 for all k s U. The parameter to 

estimate is the population mean of y, fv - (1 /N)Y2_vyk .  

In this paper we are interested in finding an estimator 

of ~7 v and a corresponding variance estimator when NN 

imputation is used for values that are missing because 

of nonresponse. 

We consider single value NN imputation carried 

out as follows: Consider a unit k s o and suppose that 

minlxl-Xkl 
l ~ r  

occurs for 1. l(k). Then the value Yt~k) is imputed for the 

missing value Yk. We call the/(k)-th unit the donor for 

the recipient unit k. The completed data set is thus 

Lv. k" k s s} where 

/Yk, (2 1) 
if k s r  

Y.k " ~ l(k) ' i f  k s o 

If the survey has 100% response, then Y-v is estimated 

by the sample mean 

- 1 ~  (2.2/ Ys " -- Yk 
pl 

Its variance is estimated by 

where 

2 1 s,,.  

In the presence of nonresponse, the customary 

approach to point estimation is to take the formula for 

100% response and calculate it on the completed data 

set. That is, from (2.2) the estimator of Yv is 

Y-s" I ( E  Yk + E Yt#o)" 
t~l r o 

For NN imputation, the bias of ~, is small if the 

relationship between y and x is linear or approximately 

SO. 

Turning to variance estimation, the naive approach 

is to calculate the ordinary variance estimator (2.3) on 

data after imputation. This gives 

V o w -  -~ - 

where ORD indicates "ordinary" and 

2 1 
(y.rL)" 

and Y.k is defined by (2.1). This variance estimator can 

be considerably off target. The objective of this paper 

is to present a valid approach to variance estimation 

when NN imputation is used for missing values. 

Denote by p(-) the sampling design, that is, p(s) is 

the known probability of realizing the sample s. In this 

paper, p(. ) denotes the SRSWOR design. Given s, 

denote by q(-Is) the response mechanism, that is, q(rls) 

is the (unknown) conditional probability that the 

response set r is realized. We assume that q('ls) is an 

unconfounded mechanism, that is, it may depend on 

the covariate values {xk: k s  s} but not on the values 

{Yk: ks s} of the variable of interest (see Lee, Rancourt 

and S/irndal, 1994). The total error of ~, can be 

decomposed into sampling error and imputation error 

as follows: 

y . s -yv-Y , -yv+Y.s -y , .  

Noting that 

with Sy 2 .  ~_,vO,,-ffu)2/(N - 1), it follows easily that the 

bias of.~, is 

The mean squared error (MSE) of ~.,, denoted by V, is 

v .  EpE,(y_,-~-u) 2 . Vs~. V ~ .  2Vu~ x. (2.4) 

where Vs~-(I/n-1/N)S~v is the sampling variance and 

V~-EpE,(y_,-;7) 2 is the imputation variance. The Vu~ x 

is the mixed term which measures the covariance 

between the sampling error and the imputation error. 

The components of (2.4) are hard to estimate unless a 
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model for the relationship between x and y is brought 

in to assist the procedure. Consider the model stating 

that, for k e U, 

y,-  I~x~+% (2.5) 

with E~(%)- 0, E~(e~). o2x, and E~(e:/)- 0 for all k ,  I. 

The anticipated MSE (that is, the model expectation of 

the MSE) can be written as 

E~ V- E~ (Vs~) + EpE~[E~ { 0,_,-if,) 2 Is, r} ] 

+ 2EpEs[E{ {O,~-yt,)(y_,-y',)Is, r}] 

The {-expectations appearing in the true variance 

components can be evaluated without difficulty, 

leading to expressions which depend on known x~- 

values and on the unknown model parameters l~ 2 and 

0 ~. To estimate the three terms of the variance, all that 

we need to provide are model unbiased estimators of 

p2 and 0 2 based on the data for the respondents, 

{(Vk, x~): ker} .  

1. Estimation o f  VsAa~ 

Our approach to estimating Vs~ is to use of the 

ordinary formula computed on the completed data set 

l~om, and add a term I~DW SO that for all s and r, 

E~{VD~-(1/n- I/N)(S~-S:,)Is, r} . 0 (2.6) 

We thus take 

I~s~. I~om~ • I~i~ w (2.7) 

The presence of I~i~ ~ ensures that Vs~ is a correct 

estimator of VsAa~ t if the model holds. More explicitly, 

it is easy to show that r~s~t estimates Vs~ with zero 

anticipated bias, that is, 

E~ {E~,E,(I~s~a~t)- Vs~ } . 0 (2.8) 

The unconfoundedness of the nonresponse mechanism 

ensures that the order of expectation operators E~ and 

EpE, can be reversed and (2.8) follows from (2.6) and 

(2.7). (An estimator with zero anticipated bias will be 

called A-unbiased in the following.) 

2. Estimation o f  V ~  

We construct an estimator I)IM e satisfying 

E~{ l)iMp-0,_,-)7,)2 Is, r}- 0 (2.9) 

for all s and r. Then it is easy to show that 1>~ is A- 

unbiased for VxMr, that is, 

E~ {EpE (I~ , ) -  Vn~l,} - 0 (2.10) 

3. Estimation o f  Vua x 

We construct an estimator I~M~ x satisfying 

E~ { VM~x - (V~ - f v)(y_, - f ) l s, r } -0  (2.11) 

Then I~M~ is A-unbiased for V~x, that is, 

E~ {E~E,(I~M~x)- VMIX} - 0 (2.12) 

The variance estimation procedure is summarized 

in the following result. 

Result 2.1. Let # s ~  be defined by (2.7), where l~nw 

satisfies (2.6). Suppose r~ r  and r~nx satisfy (2.9) and 

(2.11), respectively. Then 

I2L - Vs~ ÷ VIMr ÷ 2 I2MI x (2.13) 

is A-unbiased for V given by (2.1), that is, 

E~{Ed,(r~)- Z}. o 

The proof follows easily with the aid of (2.8), (2.10) 

and (2.12). 

This approach leads to the variance component 

estimators that we now describe. First define the 

following quantities: 

r • 

E ~-I, (x*- Z')~ 

sL.1E n- I , (x'kSx"')2 

where x. k . x k if k e r and x. k . xt(k) if k e o, ~., - (1/n)~_~ s x .  k .  

Finally define 

02 = l E r  O/k - ~Xk) 2 ] (m - 1) 
1 - (CVxr)2/m ~ r x k / m  

and 

~ (~)~ ~ 
E r  Xk 

where CV,,r=S,,•/£ • with S~ .  ~_,,. (xk-£)2/(m - 1). Note 

that 0 2 and ~2 are model unbiased for 0 2 and I ~2, 

respectively. Then we have the following expressions 
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for VDw, r?~ and VMtx" 

^ 1_ p -S~.~ n(n- 1)x VDn~" n 

n2[ 

÷6z~~oxj.+~F,(Fk-1)x,+~o~ 

where F k is the number of times that the k-th 

respondent is used as a donor for imputation and 

d t . xt(k)- x t. 

From a simulation study which will be reported in 

the next section, we noticed that r~D~ and r?~nxterms 

are near zero. If we drop these terms, the variance 

formula becomes much simpler as given below: 

This estimator is subscripted by "S" to indicate that it is 

a short formula opposed to the long formula IY z. It is 

interesting to note that the standard variance formula 

for a completed data set with NN imputation is good to 

estimate the sampling variance component. In a sharp 

contrast, this is not the case for ratio imputation. 

Noting also that ~o  d~, is near zero, the short 

formula can be further simplified by dropping this term 

from r~n~r. This further simplified variance estimator is 

then given by 

(1 1)S:,+_~z~~oxi+~_,Fi,(FI_ l)x,} (2.14) 

This formula was also investigated in the simulation 

study. 

3. SIMULATION STUDY 

3.1 Simulation Set-up 

We carried out a simulation study to confirm that 

the method developed in Section 3 works. An artificial 

population, fairly typical of what one may encounter in 

practice, was generated as follows. We created N.  400 

pairs (xk, yk) by first generating the x:values from a 

gamma distribution with mean 48 and variance 768. 

Then for each value xk, the value Yk was generated 

from a gamma distribution with mean l.Sx k and 

variance d2xk. The constant d was chosen in order to 

obtain a correlation between x and y close to 0.8. The 

population scatter (xk, yk) then follows a ratio model, 

that is, a linear regression through the origin, with 

slope close to 1.5. 

From this population, a simple random sample 

without replacement (SRSWOR) of size 100 was 

drawn. Nonresponses were then randomly generated 

using independent Bernoulli trials with a constant 

parameter equal to 0.3 representing the probability of 

nonresponse. NN imputation was then performed for 

the missing values. Finally, from the completed data 

set, the point estimator ~, and the variance estimators, 

I? L and r? s given by (2.13) and (2.14), respectively, 

were calculated along with the variance components. 

This experiment was repeated one million times 

independently. A replicate sample is the resulting 

sample from such an experiment. 

The performances of the proposed variance 

estimators, the long and short formulae, are assessed 

using the two main criteria: the relative bias and the 

coverage rate for the 95% confidence interval. These 

criteria were calculated as means and variances over 

the one million Monte Carlo sampling experiments. 

These variances and expectations are treated as true 

values even though they are subject to small Monte 

Carlo errors. We denote these Monte Carlo variance 

and expectation operators by V u and Eu, respectively. 

Then the relative biases of I? L and I2 s are given by 

~ , .  100× E,A rS- v~(v-,) 
v~v_,) 

where 9 represents l? z or I2 s. 

The 95% confidence interval was constructed 

using the standard normal distribution, as .~,+ 1.96~/-~. 

The coverage rate is then given by 
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COVRu- 100× t 
T 

where T. 1,000,000 and t is the number of times that 

the confidence interval covers the true mean. 

3.2 Results 

Table 1 summarizes the f'mdings of the simulation 

study. The two columns headed "Sampling" refer to the 

repeated draws of SRSWOR samples of size n.  100 

from N-400. The column headed "Census" refers to 

the case n .N.400,  that is, the entire population is 

considered to be selected and nonresponse is generated 

by Bernoulli trials with nonresponse probability equals 

to 0.3 for all 400 units. Then there is no sampling 

variation, that is, Vs~- P'D~" VMax" 0 and imputation is 

the only source of variance, which is estimated by 

Vnva," The table shows in all three columns that the 

variance estimator developed in Section 3 works very 

well. The bias is virtually zero, and the coverage rate 

of the 95% confidence interval is very close to the 

nominal 95%. The short formula is an excellent 

approximation to the more cumbersome exact formula, 

the reason being that /~Dn, and r~u~ x are very close to 

zero. (It is likely to be by coincidence that the short 

formula actually has slightly less bias.) 

4. CONCLUSIONS 

The simulation study confirmed what the theory in 

Section 3 leads us to expect. Since the proposed 

estimators are obtained from the model-assisted 

approach, the validity of the model assumptions 

particularly the linearity assumption is crucial. If this 

assumption does not hold, then the variance estimator 

as well as the point estimator are biased. In this case 

NN imputation should not be attempted in the first 

place. If other imputation method is used, the variance 

estimator has to be changed accordingly. 

If the long form of the proposed variance estimator 

is used, it is important to store information on the 

distance (denoted by dk) between a donor and the 

corresponding recipient and on the number of times 

(denoted by Fk) that a donor is used in imputation. 

However, in the simplified formula, the distance 

information is not required. One may try to simplify 

the short formula even further by dropping the term 

containing F k thinking that it is not important. 

Contrary to this, our simulation showed that this term 

is not negligible and thus, should not be dropped. 
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Table 1. Simulation Results of the Proposed Variance Estimator 

v iy_) 

VSAM 

Vnva, 

Eu(/?L) or Eu(~s) 

Bias 

Rel Bias 

Cov Rate 

Interval Length 

Long Formula (~,,) 

70.96 

25.91 

18.99 

6.92 

26.21 

18.78 

0.37 

7.08 

-0.01 

0.29 

1.1% 

94.6% 

19.99 

22.5 

Short Formula (Vs) 

70.96 

25.91 

18.99 

6.92 

25.73 

18.78 

N/A 

6.95 

N/A 

-0.18 

-0.69% 

94.4% 

19.81 

20.77 

Sampling 

Census 

70.94 

1.57 

1.57 

1.56 

0 

1.56 

-0.01 

-0.64% 

94.7% 

4.88 

0.06 
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