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1. Introduction. Each month, the Bureau of 
Labor Statistics (BLS) publishes labor force estimates 
for the U.S. resident population and a variety of its 
demographic subgroups, e.g., teenagers, Hispanics. 
Published figures include estimated numbers of persons 
employed, unemployed, and not in the labor force, as 
well as relevant rates such as unemployment rates. 
These statistics are computed using data from the 
Current Population Survey (CPS), a monthly 
household survey the Census Bureau conducts for the 
BLS. 

The CPS sample is a two-stage probability sample 
of housing units, covering the entire U.S. Each new 
sample unit remains in the sample for four months, 
leaves the sample for eight months, and then re-enters 
for another four months. One quarter of the sample is 
new (or re-entering) each month, while half of each 
month's sample comes from the sample for the same 
calendar month one year earlier. This "four-eight- 
four" sample rotation scheme results in positive 
correlation between CPS estimates from different 
months, improving measures of change over time. The 
positive correlation is further increased by composite 
estimation. 

Composite estimation is the last in a series of 
estimation steps performed on CPS data, prior to 
seasonal adjustment. Unlike weighting techniques, 
composite estimation does not affect CPS micro data; 
composite estimates are computed using estimated 
totals from the various rotation groups--groups of 
respondents who enter the sample together. Since the 
composite estimates incorporate information from 
several months' data, users cannot compute composite 
estimates from only one month's micro data. 

In this paper, we present a method of computing 
composite weights for the CPS---micro data weights 
that incorporate the effect of composite estimation. 
Data users would compute composite estimates by 
simply adding these weights, using only one month's 
CPS data. This method, suggested by Fuller (1990), 
also allows us to tailor the composite estimator--by 
varying coefficients---to the correlation structures of 
major labor force categories, thus improving reliability. 
Section 2 provides a brief overview of current CPS 
estimation procedures, including composite estimation. 
In Section 3, we describe the process of selecting 
compositing coefficients for different labor force 
categories. Section 4 contains results of an empirical 

study of two variants of Fuller's composite weighting 
method, as applied to CPS data. 

2. Current CPS Estimation Procedures. For 
each person in the monthly CPS sample, the Census 
Bureau calculates a weight--a rough estimate of the 
number of actual persons the sample person represents. 
Computing the weights involves several steps: initial 
weights reflect probabilities of selection for the sample; 
these "base weights" are then adjusted upward to 
account for the occupied sample households not 
interviewed. Two types of ratio adjustments are then 
applied. The f'mal ratio adjustment, a raking process, 
ensures that the sample weights for important 
population subgroups sum to population estimates that 
nearly equal independently derived population 
estimates for those groups. Our methods of computing 
composite weights, which we discuss in Section 4, 
closely resemble the current CPS raking ratio 
adjustment. 

2.1. The CPS Raking Ratio Adjustment. 
Because demographic characteristics, such as age, race, 
and area of residence, are correlated with labor force 
status, CPS estimates should reflect the distributions of 
these traits in the population. Accordingly, the Census 
Bureau adjusts weights for CPS sample persons aged 
16 or over to agree with three sets of population 
estimates: population by state, by age/sex/ethnicity 
group, and by age/sex~ce group. (Only two 
ethnicities, Hispanic and non-Hispanic, are considered 
in the adjustment.) These population estimates, often 
called raking "controls," are based on the most recent 
decennial census, corrected to account for changes 
since the census time. Because the composite 
estimation step follows ratio adjustment and reweights 
the data according to sample rotation group, the raking 
is performed separately within each of these groups. 
For a description of the actual raking process, see 
Current Population Survey: Design and Methodology, 
p. 59 (Technical Paper 40, U.S. Bureau of the Census, 
1977). 

2.2. The CPS Composite Estimator. Each 
monthly CPS sample comprises eight rotation groups, 
which are distinguished by the number of monthly 
interviews they have completed. A separate set of 
labor force estimates may be computed from each 
rotation group's data. We use the notation of Cantwell 
and Ernst (1993): for i = 1 ..... 8, let Xh, ~ be a labor force 
estimator of total (e.g., total unemployed) for month h, 
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computed using data from the ith rotation group. That 
is, Xh, i is eight times the sum of the sample weights, 
after raking, of respondents in the specified labor force 
category who completed their ith interview in month h. 

Then Yh = ~ Y~-I X h,i is the CPS ratio estimator for the 

labor force category. 
The CPS composite estimate for a given labor 

force characteristic is based on a weighted average of 
two estimates for the same characteristic: (1) the CPS 
ratio estimate and (2) the previous month's composite 
estimate plus an estimate of change since the previous 
month. Because of the "four-eight-four" sample 
rotation pattern, six of the eight rotation groups in the 
sample for month h-1 remain in sample for month h. 
Thus for i e S, where S = {2,3,4,6,7,8}, positive 
correlation between Xh, ~ and Xh.l,i. 1 serves to reduce the 
variance of estimates of change computed from these 
figures. So the change in the labor force characteristic 
since the previous month is estimated here by 

1 =-g X(x,, ) 
i E S  

In addition to the weighted average of the two 
estimates described above, the CPS composite estimate 
incorporates an adjustment which reduces variance 
while at the same time partially correcting for bias 
associated with time in sample. Results of past 
research have indicated that, for estimates of total 
unemployed, E(Xh, ~) significantly exceeds E(Yh). (See 
Bailar 1975.) While the causes of the time-in-sample 
bias are unknown, Breau and Ernst (1983) found that 
adding a bias adjustment term to the composite 
estimator reduced both the variance and the time-in- 
sample bias of CPS estimates. The current bias 
adjustment term is based on the quantity 

i ~ S  " , 

which serves to reweight the estimates from the various 
rotation groups, assigning slightly more weight to data 
from persons completing their first or fifth interviews 
in month h. Note that if all the Xh,~'S had the same 
mean, ~h would have mean zero. 

Incorporating both the weighted average and the 
bias adjustment term, the CPS composite estimator 
takes the form 

r~" = (1-K)Y, +K(Y;_, +A~)+AI3,, 
where A and K are constant parameters between zero 
and one. The CPS composite estimator is often called 
an "AK estimator," because it involves these constant 
coefficients. Currently, the estimator is applied with A 
= .2 and K = .4 for all labor force categories. These 
values are approximately optimal for monthly 

estimates of unemployment level. 
Optimal values of A and K for monthly labor force 

totals, however, depend both on the time-in-sample 
bias pattern and on the correlation structure of the 
labor force estimates across time. Since these vary by 
labor force category---estimates for employed, for 
example, are more strongly correlated than those for 
unemployed---optimal values for the compositing 
coefficients also vary. Moreover, in January 1994, a 
new questionnaire and data collection method were 
introduced in the CPS; these may affect the time-in- 
sample bias. Estimating the new bias pattern will 
require data from several months following January 
1994. 

Due to differences in the correlation structures of 
CPS estimates, using different A and K parameters for 
different labor force categories would improve 
accuracy. At the same time, however, varying the 
coefficients could render some estimates inconsistent 
with one another. By def'mition, for example, the 
civilian labor force comprises persons who are either 
employed or unemployed. Use of different compositing 
coefficients for these three categories could result in 
estimates of total employed and total unemployed that 
fail to stun tO the estimated level of the civilian labor 
force. Also, as discussed above, CPS population 
estimates must reflect the population distributions of 
certain demographic waits, as estimated through the 
decennial census. Widely varying compositing 
coefficients could alter the distributions of these waits 
in CPS sample population estimates computed as sums 
of composited labor force estimates. 

The "composite weighting" approach, suggested by 
Fuller (1990), eliminates the problem of inconsistent 
estimates by introducing a second raking ratio 
adjustment, similar to the one now used in the CPS. 
This time, however, the composite estimated labor 
force totals would take the place of population 
estimates, forcing the resulting person weights within 
each labor force category to sum to the composite 
estimate. The actual raking could be performed in a 
variety of ways, as discussed in Section 4. 

3. Selecting Compositing Coefficients for Labor 
Force Categories. In this research we apply different 
pairs of A,K compositing parameters for measuring 
different characteristics. The choice of values for A 
and K, however, is still not obvious. A pair which 
works well for estimating monthly level may not 
perform as well when estimating month-to-momh 
change or annual average. 

For evaluating the proposed technique, we selected 
A = .3 and K = .4 when estimating the number of 
people unemployed, and A = .4 and K = .7 for the 
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number employed. Each of these pairs represents a 
compromise across the important measurements. 

It should be noted that the methods and results 
presented in this paper apply to AK estimators. As has 
been observed by Breau and Ernst (1983) and Gumey 
and Daly (1965), estimators which allow more general 
coefficients can effect further reductions in the 
variances, especially when measuring annual average. 
The accompanying biases, however, may be larger in 
these cases. 

3.1. Criteria for Selecting the Coefficients. For 
any labor force characteristic, the estimates for 
different months from the same rotation group are 
correlated because of their common respondents. If Xh, i 
and Xh.rj represent estimators from the same rotation 
group r months apart, the values are correlated as a 
function of r. When measuring the number of people 
unemployed, previous studies (Breau and Ernst 1983; 
Adam and Fuller 1992) yield correlations of about .50 
when r is 1, decreasing to about .20 when r is 15. 
Corresponding values for the number of employed are 
considerably larger, dropping from about .80 to under 
.60 over fifteen months. In our study, we used 
correlations slightly smoothed from those obtained in 
the given references. 

Estimates for the different characteristics also 
exhibit different patterns of bias across the eight 
months in sample. For this study, however, we 
selected the A,K pairs based on comparisons of 
variance rather than mean squared error. CPS month- 
in-sample bias patterns have probably changed since 
January 1994, when a new questionnaire was 
introduced and laptop computers replaced paper and 
pencil in the data collection process. It will be a while 
before good estimates of the new bias patterns are 
available. 

For any labor force characteristic, we must 
consider three measurements when choosing the 
parameters A and K" monthly level, month-to-month 
change, and annual average. The importance of the 
first two is not in question. But annual average is 
critical for many state CPS estimates. Of the 50 states 
and the District of Columbia, 40 do not have samples 
large enough to meet reliability requirements on a 
monthly basis. For these smaller states, the annual 
average for labor force characteristics is a key measure. 
A cursory look at the form of the AK estimator in 
Section 2.2 shows that changing K gives conflicting 
results: while increasing K can help reduce the 
variance of month-to-month change, it generally 
amplifies the variance of annual average. 

The choice of coefficients to use came down to 
computing three variances for each A,K pair and 

comparing the sets across all A,K pairs. As no one pair 
yielded the smallest variances for all three 
measurements, a compromise was necessary. 

3.2 The Selections. Though the variance 
formulas required for selecting optimal parameters A 
and K are found in Cantwell (1990), solving for 
optimal A and K would be a formidable task. We 
therefore computed variances for all combinations of A 
and K equal to 0,.1,.2 ...... 9. Except at the extremes (A 
and K near 0 or .9), the variances do not change 
rapidly with changing A and K. 

For estimating the number of people unemployed, 
we selected A = .3 and K = .4. This pair is optimal, 
among the 100 pairs observed, for measuring monthly 
level; it is close to optimal when measuring month-to- 
month change and annual average. A similar situation 
arises when we estimate the number of people 
employed. The optimal pair for measuring monthly 
level, A = .4 and K = .7, fares well for all three 
measures. So for estimating unemployed ~ and 
employed, the selections which minimize the variances 
of monthly levels are good compromise choices. 

4. Computing CPS Composite Weights. The 
first step in Fuller's method of computing composite 
weights is to compute the composite estimates which 
will serve as "controls" in the raking adjustment. The 
raking process we apply will differ slightly according 
to the level of the controls. We consider two basic 
approaches: 
1. Compute composite labor force estimates only for 

the nation as a whole. We will refer to the 
resulting composite weights as national composite 
weights. 

2. Compute separate composite estimates for each of 
the demographic subgroups represented in the CPS 
raking ratio adjustment. We will call the resulting 
weights marginal composite weights. 

In our empirical study of these alternatives, we 
consider only data from respondents aged sixteen or 
older. 

In the first approach, we composite the national 
estimates for two labor force categories----employed and 
unemployed---using values of A and K selected 
specifically for each category, as described in-the 
previous section. The civilian labor force, by 
def'mition, comprises persons falling into one of these 
two categories; thus the sum of the composite estimates 
for employed and unemployed is a reasonable estimate 
of the number of people in the civilian labor force. An 
estimate of the number of people not in the labor force 
may then be obtained by subtracting this estimate from 
the national population control. The raking procedure 
that follows is identical to the CPS raking ratio 
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adjustment, except a fourth dimension of raking is 
added: raking to the national composite labor force 
estimates. 

The second approach requires computing 
composite estimates for the three main labor force 
categories within each demographic group used in the 
raking ratio adjustment. The method used to compute 
the composite estimates is analogous to the one used at 
the national level. The three-dimensional reraking 
process, however, must be carried out separately for 
each labor force category; it proceeds just as the 
current raking ratio adjustment, but the composite 
estimates for the given category take the place of the 
population controls. 

Since replicate weights, computed by generalized 
replication (see Fay 1989) were available for 1987 CPS 
data, we used these weights to compute composite 
replicate weights by the two methods mentioned above. 
From the composite replicate weights we estimated the 
variances of labor force estimates computed from each 
set of composite weights. 

4.1. Raking to National Composite Estimates. 
We performed the four-dimensional raking adjustment 
using national composite estimates on CPS data from 
April through December, 1987. Typical adjustment 
factors used in this method fell very close to 1.0: 
compositing appeared to have little effect on the 
national labor force estimates. This seemed reasonable 
because, as explained above, the composite estimator is 
based on a weighted average of two estimators. When 
the sample is large, as in the case of the national 
estimates, the variances of both estimators are 
relatively low, so the difference between estimates 
obtained from them is usually slight. The difference 
between national CPS ratio estimates and composite 
estimates is correspondingly small, resulting in 
adjustment factors close to 1.0. 

Since the bias patterns of CPS estimates have 
probably changed due to the new data collection 
method, we used the coefficients of variation (CV's) to 
evaluate the accuracy of labor force estimates computed 
from the national composite weights. The CV's of 
subnational estimates computed from the national 
composite weights consistently exceeded those of the 
optimal composite estimates. For employment levels 
and estimated numbers of people not in the labor force, 
differences in the CV's for the two sets of estimates 
were especially marked. We used the estimated CV's 
for the eleven largest states to test the significance of 
the loss of reliability that would result from using the 
national composite weights. Because of the positive 
correlation of the estimates across months, we 
averaged the nine monthly estimates of CV for each 
state and each estimation method (optimal composite 

and national composite weights). We then computed a 
ratio of CV's for each state, dividing the average CV 
for the national composite weight estimates by that for 
the optimal composite estimates. T-tests performed on 
the state CV ratios for each labor force category gave 
the results shown in Table 1. The null hypothesis--- 
that the ratios have a mean of ono--is equivalent to the 
assumption of no significant difference in the 
reliability of optimal composite estimates and estimates 
computed from the national composite weights. As 
indicated by the p-values, all the t-statistics are 
significant at the 0.05 level, implying that the 
reliability lost by use of the national composite weights 
is significant. 

Table 1. Results of T-test for State CV Ratios 

. . . . . . .  I tm 
Mean CVRatio I 1 .1155  i.0165 
t-statistic 9.0212 2.9715 
p-value 0.0001 0.0140 

NILF 

1.1146 
8.6360 
0.0001 

4.2. Raking to Composite Estimates by 
Demographic Group. Because of the reliability 
problems with the national composite weights, we also 
computed marginal composite weights for 1987 data. 
As mentioned, producing marginal composite weights 
requires a separate raking process for each of the three 
main labor force categories (employed, unemployed, 
and not in the labor force). For estimates of 
employment level, none of the demographic groups 
used in the CPS raking adjustment proved too small to 
support reasonable composite estimates. Six iterations 
of raking were sufficient to virtually reproduce the 
optimal composite estimates for all states and 
demographic groups as sums of marginal composite 
weights. The marginal composite weights thus 
outperformed the national composite weights for 
monthly subnational estimates of employment level. 

Producing marginal composite weights for the 
unemployed category, however, proved more 
problematic. Unemployed sample persons for some of 
the age/sex/race groups used in the raking adjustment 
--notably those including mainly persons of retirement 
ago----often numbered in the single digits; in some data 
months, we had no unemployed sample for some of 
these older groups. In these cases, the composite 
estimates of unemployment level occasionally strayed 
below zero. We also observed small sample counts for 
some Hispanic age/sex groups used in the ratio 
adjustment, indicating the possibility of negative 
composite estimates, though none actually occurred in 
the data we analyzed. 
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Table 2. Cells Collapsed in Computation of Marginal 
r Composite Weights: Unemployed 

_ 

Age Average Collapsed 
Cells Sample Ceils 

Count , 
:,;. . . . . . . . . . . . . . . .  - . . . . . . . .  . ~ . . ~ . ~ , . ~ k ~ -  . . . .  ~ - . ~ . ,  & ' . . & - ~ . . 2 - . , . , . . ~ - . - . . . , ~  ~ ~ ~ , ~  . ~ , ~ , , ,  ~ , ~ , . . ~  ~_-_-_-_ . . . . . . . . . .  . - . , _ ~ _ : _ - -  . . . . .  

White 
Male 

60-62 
63-64 
65-67 
68-69 
70-74 
75+ 

33.9 
12.0 
9.0 
4.8 
6.2 
2.8 

W h i t e  

M a l e  

6 O +  

~ ~ ~ ~ - ~ ~ _ _ < ~ _ - _ - _ _ _ : _ _ _ _ _ _ _ _ .  

White 
Female 

60-62 
,,, 63-64 , 

65-67 
68-69 .... 
70-74 
7 5 +  

21.2 
8.4 
7.0 
3.0 . . . .  

4.0 
2.6 i 

White 
Female 

60+ 

Black 45-49 18.4 
Male 50-54 12.6 Black 

- -  i | , ,  • 

55-59 9.0 Male 
,,,,in , i i  • 

6 0 - 6 4  7.7 45+ 
- -  i n  , i n  

65+ 2.6 

Black 45-49 21.3 
I J  I I t :  . . . . . . .  

Female 50-54 11.3 Black 
~ :  I I I  • I I  

55-59 8.1 Female 
I E  , 1  I I  

60-64 4.4 45+ 
: I I I  _ J 2 I I  

65+ 2.1 
- '  ' ~ : "  - - ¢ ~  ~ x ~ c ¢ , : o r ~ . . - . : . :  : ; : . : - : - - - ~ . - . : . - -  , . ~ . . ~ , ' . - : o . f f , : . x . : . : ~ c c . : o ~ , x x c . o : o : o ~ o : . : o t c c ¢ . :  

~ ~ : - : ~  - ~ • ._~ 

Other I 1 6 - 4 4 '  I! . . . .  90.4 ...... 

L i Other I 16-44 I 6 8 . 1 1  Other ,, 

. . . . .  Female ~ 45+ 9.7 Fern. 16+ i 

Male ~ 50+ ~ 21.2 I Male 30+ 
~, I ~ " 1  , , , / I 

Hispanic 30-49 , 50. 7 [ Hispanic 
Female 50+ 11.4 .... [ Fem. 30+ . 

Demographic cells with unusually high or low 
sample population estimates---usually due to low 
sample counts--are routinely collapsed with other ceils 
in the CPS raking ratio adjustment. The collapsing 
algorithm, however, results in different collapsing 

patterns for different months (and even for different 
rotation groups in the same month). Since computing 
marginal composite weights requires comporting 
estimates across months, varying cell definitions from 
month to month would complicate implementation 
considerably. We chose instead to seek one set of 
permanent cell definitions which would (1) ensure 
sufficient sample in each cell to provide reasonable 
composite estimates and (2) result in minimal loss of 
reliability in the labor force estimates computed from 
the marginal composite weights. 

Our collapsing of cells was based on sample 
counts: to provide reasonable composite estimates, we 
wanted at least ten sample persons per cell. Since 
sample counts vary from month to month, it seemed 
desirable to collapse cells whose sample counts rarely 
e x ~  a dozen, even if the counts for these cells 
never fell below ten for the 1987 data months we 
analyzed. Given the loss of reliability that resulted 
f~om using national com~site weights, however, we 
were also concerned that ~ much collapsing might 
increase the CV's of labor force estimates computed 
from the marginal composite weights. 

We computed marginal composite weights for 
' 1987 unemployment data (April through December) 

using several alternative collapsing plans, which 
involved different lower bounds for the average sample 
count or for the minimum sample count obtained from 
our nine data months. F~imated CV's of the resulting 
unemployment totals indicated that collapsing the 
smaller cells had little effect on the reliability of 
estimate.s computed from the composite weights. Table 
2 shows the average sample counts for the smaller 
age/sex/ethnicity cells and age/sex]race cells and 
indicates the collapsing pattern we found most 
desirable. Since it involved collapsing all cells whose 
minimum sample counts fell below twelve, we were 
confident that it would ensure sufficient sample to 
provide reasonable composite estimates for all cells. 

For certain ceils, collapsing was clearly necessary:. 
unemployment estimates for the older age groups 
considered in the age/sex~ce adjustment consistently 
suffered from low sample counts. In cases where the 
need for collapsing was disputable, however, we 
performed statistical tests to determine whether or not 
the collapsing would significantly increase the C~s of 
estimates computed from the composite weights. For 
demographic groups affected by such collapsing, we 
considered the ratio of the CV of the unemployment 
estimate computed from the marginal compo~te 
weights to the CV of the corresponding optimal 
composite estimate. Let 
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where 

and 

F--  

^ 

Xm = an unemployment estimate computed 

from marginal composite weights; 

^ 

Xo = the corresponding optimal composite 

estimate of unemployment. 

For each data month i, i = 1 .... ,9, we computed ~, an 

estimate of r, for each of several demographic groups. 
We used these nine observations to test the hypothesis 
that the effect of the cell collapsing shown in Table 2 
did not significantly affect the reliability of important 
unemployment estimates computed from the marginal 
composite weights. That is, we tested 

Ho: r = l ,  
for each demographic group. 

The results of the t-tests for the collapsing of age 
cells in the "other races" category are shown in Table 
3. Due to positive correlation between the estimated 
CV ratios for different months, the t-statistics are 
conservative in the sense that they support rejection 
more often than the usual nominal level (under no 
correlation) would indicate. Since none of the test 
statistics are significant, the effect of the cell collapsing 
on the CV's of the estimates is negligible. Thus the 
collapsing of age cells within each sex group in the 
"other races" category appears appropriate: all the p- 
values in Table 3 are too high to allow rejection of H o. 

Table 3. Tests for Loss of Reliability Due to 
Collapsing Age/Sex/Race Cells: UnemPloyed ..... 

. . . . . . . . . . . . . . . . .  M e a n  

other  Male 16-44 
Other Male 45+ 
Other Fern. 16-44 
Other Fem. 45+ 

. . . . .  

1.0088 
1.0315 
1.0098 
0.9474 

t-stat, p-value 
,,m, ,, i , ,  

1.009i" 0.3425 
0.8916 0.3986 
0.8726 0.4083 
- 1.2009 0.2641 

5. Summary. We can improve reliability of CPS 
labor force estimates by using different A K  
compositing coefficients for different labor force 
categories. To ensure that estimated labor force totals 
equal the sums of their estimated components, Fuller 
(1990) suggested incorporating the effect of composite 
estimation into CPS micro data weights through a 
procedure similar to the raking ratio adjustment now 
used in the CPS. Composite estimates may then be 
computed as sums of these composite weights. 

In our research on computing CPS composite 

weights, we consider two possible methods, each based 
on a ratio adjustment applied m the micro data weights 
to force the weights in a given labor force category to 
sum to a composite estimate. The methods differ in 
that the composite estimates used as "controls" in the 
ratio adjustment are computed at a different level for 
each method. The first metho6---computing composite 
estimates at the national leveF---appears to result in 
subnational estimates whose reliability falls 
significantly below that of the optimal A K  composite 
estimates. In the second method, we compute 
composite estimates for each demographic group 
represented in the current CPS raking ratio adjustment 
and then perform a separate raking adjustment for each 
labor force category. Though some collapsing of 
demographic groups is needed to allow implementation 
for the unemployed category, this method provides 
labor force estimates for states and important 
demographic subgroups that virtually equal the 
corresponding optimal A K  composite estimates. 
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