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1.Weights, Problems in Weighting, and Adjustments 
This paper develops a minimum mean square error 

(MSE) estimator of the population mean in the context 
of stratified simple random sampling. Like the unbiased 
estimator, our estimator is a weighted average of the 
sample means for the strata; unlike the classical 
estimator, our estimator is biased. The justification for 
using a biased estimator is that it has smaller mean 
square error than the unbiased estimator and it has only 
a relatively small bias. 

Weighting is usually used to obtain unbiasedness. 
The cost of bias reduction, however, is often the 
inflation of variance. Therefore, it has long been 
conta in  practice to restrict the variability of the 
weights to prevent variance from becoming excessive, 
even though the adjustment of the weights introduces 
bias into the estimators (Kdsh 1990). 

In practice, weights are adjusted by trimming of 
extreme weights and shrinkage of weights. Trimming 
may be used to avoid or to minimize the size of 
extreme weights, by setting pre-specified limits on the 
size of the weights prior to the computation of weights 
(Alexander 1978, Hanson 1978, Cox and Grath 1981, 
Johnson et al. 1987, Potter 1990). Although other 
criteria or assumptions can be used, these type of 
methods are usually computation-intensive and hard to 
employ in practice. Furthermore, these informal 
methods of adjusting the weights are not generally 
optimal. Another type procedure of adjustments shrinks 
weights toward each other to reduce the variability of 
weights rather than truncating extreme weights (Cohen 
and Spencer 1991). Instead of restricting ourselves to 
trimming or shrinking the weights, we will derive 
adjusted stratum weights that minimize the MSE of the 
weighted sample mean. 

2. Optimal Adjustment of Weights in Stratified 
Sampling 
2.1 Setup and Notations 

Consider a set of N units partitioned into L disjoint 
groups or strata with Nh > 0 units in the h a stratum, h 
- 1,2,...,L. Let Yh~ denote the value of the 
characteristic of interest for the i a unit in stratum h. A 
stratified random sample is selected by independent 
simple random sampling of n~ > 0 units from stratum 
h, h = 1 ,2 , . . . ,L.  We also use the notation Yi and Yh~ to 

denote values of the sampled units; there is no relation 
between a particular value of the index i in the 
population and the sample. For stratum h, we define ( 
stands for define): the stratum weightW h ~ Nh/N 
which reflects the stratum population base, the sampling 

ratio fb t nk/Nh, the population mean: 'Yb~ I/Nb ]: ~,Ys, 

the sample mean: Yh~ I/nh ]:~sYu, the variance of 

stratum h: Sb 2 ~ I/(Nh-1 ) ~l(ybi-~rS) 2, the sample 

variance of stratum h: sh 2_A 1/(n h -1) ]~ ~,(y~-yh) 2. 

Let E( • ), V( • ) and Cov( -,  • ) denote expectation, 

variance and covariance. The variance of Yh is 

V h _A V(~h) =( 1 -fs) Ss2/nh and it is unbiasedly estimated 

by v h & v(yh) = ( 1 -fb)~/nh. 
Matrices are indicated by bold font, like 

I v 0  
i 10 

Yn_.] : ,V_n[ "'" : ; 

• ofsan~ ~ [  l e ~ s t i n ~ ~  0are .Om~ld~lo~er case. 
Rather than restrict ourselves to trimming or 

shrinking the weights, we will derive adjusted stratum 
weights Ah, h - l , 2 , . . . , L ,  that minimize the mean 
squared error of the weighted sample mean y-A~ 

L - -  h.iAhYh, or in its matrix form yAffiA°y where A is 

the vector of Ak's. That is, MSE(yA) ffi min (E(yo -y)2).  
v a E R  c 

2.2 Lagrange multiplier approach and minimum 
MSE weights 

The usual stratification weights, W h = Nh/N , ~ be 
interpreteA as the proportion of units in the various 
strata. Of course, they sum to 1. In nxxiifying the 
weights to reduce the mean square error below that of 
]~ Why h, it may be desirable to retain the property that 

the weights are non-negative and sum to 1: V~ A s ffi 1. 
The Lagrange multiplier approach will be used to 
derive the minimum MSE weights. Let k be a 
number and let 

F(A) =V(yA) +bias 2(y^) +~,( ~ A h -1)  
(2.1) 

=A "VA +(Y "A-Y "W) 2 +k(l  "A-1).  
We seek to minimize F(A) subject to 1 "A ffi 1. Setting 
the partial derivative to zero yields, 

/)F/0A ffi2VA +2YY "A-2YY "W +kl =0 .  (2.2) 
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Substitute X in the equation and note that the optimal 
weights A will satisfy 

( I -11  "/L)(V +YY')A = ( I -11  "/L)YY "W.  
Since V is nonsingular, so is V+YY' .  For any 

X E R  L, (I-11"/L)X lies in the column space of 
1-11"/L, hence the equations are consistent. In 
addition, 1-11 "/L is idempotent, so its Moore~Penrose 
inverse is itself. The general form of the solution 
satisfies 

+YY 3A ffi(I I I  " . y y  "W + . ~ ' ~ ,  ( v  
- - L - )  

where ~ E R i .  or equivalently 

11 " . y y  "W +k(V +YY ") -11, A "(V +YY ")-l(l---~-) 

where k = 1 "~/L. We can eliminate k by applying the 
constraint 1 "A ffi 1. Simplifying the formula we get 

11 " . y y  "W + (V +YY .)-i 11 "W 
A =(V +YY ")-1(I --~--7 i "(V +YY ")-tl 

1 1 " . y y  "W (V +YY ")-'11 "(V +YY ")-'(I - T )  

1 "(V +YY ~"1 
=(V +YY .) - i y y  "W + (V +YY -)-i 11 "W 

1 -<V + y y - ) - i l  
_ (V +YY ")-tll "(V +YY ")-~YY "W (2.3) 

1 "(V +YY ")-il . . . .  
Theorem 2.1. The minimum MSE solution of equation 
(2.2) is A given by (2.3). 
Proof. We have shown that A solves (2.2). To show it 
has the minimum MSE, first note that V > 0  and 
yy ">0.  Now, the second derivative of equation F(A) 

is B2F/#A2=2(V +YY') >0 ,  showing that F(A), as the 

function of weights A, is convex in R L. Under the 
constraint I ' A  =1, F(A), given by (2.1), has a strict 
local minimum at A given by (2.3). Since the equation 
has a unique solution under the constraint, A is the 
unique minimum MSE solution. D 

3. Properties of the Minimum MSE Weights 
In this section we will study the relationship among 

the minimum MSE weights, conventional unbiased 
weights and the minimum variance weights. 
3.1 Basic Properties of the Minimum MSE Weights 

The conventional weighted estimator of the mean in 
stratified sampling is Yw-Z ]~ Wh~ h with expected value 

Yw _A ]~ W bYh ffi Y" We may rewrite this estimator in an 
alternative way, as a weighted average of the sampled 
units, with weights inversely proportional to the units' 

selection probabilities, ~rh---ILn/Nh, in their respective 

strata: Y-w ffi Y L-~WhYs ffi 1/N ~ L.~ ]~ ~yg/Tk" 

Therefore, a large contribution to the variance can by 
made by a unit with a value far from the mean and a 
small selection probability. This is why high fluctuation 
in weights can cause high variance. 

Anmng all convex combinations of the san~led y's, 
the minimum variance is attained by y¢ = ]~ W~y h, 

where W ,  ~ (1/Vb)/(]~ INs) .  The variance of y~ is 

V(y,) = 1/(1 "V-a 1). Unless the stratum nw, ans are all 

equal, y~ is biased. Note that ~W~h = 1 and define 

Y ~  ]~ Wd, Yh" A kind of generalized variance is 

E Yo)  > 0. 
The following theorem shows that the expected value 

of y'A, Y'A,  is a weighted average of the expected 
values of y~, which minimizes the variance, and y,,, 
which minimizes the bias. It reveals the fundamental 
relationship among estimators of Y-A, y and Yw" It is 
shown that the sample based mean estimator with 
minimum-MSE stratum weights from a stratified sample 
is equivalent to a shrinkage estimator. The application 
of shrinkage estimator is justified as an optimal 
compromise ~ e e n  a design-unbiased approach and a 
model-dependent approach in survey data. 

Tlamrem 3.1.Let 7 ffi (n,S,2)/(l +n S~:) with n =  ~ I/V s. 
The expected value of y "A may be written as 

. . .  . . .  

Y'A ffi .y Yw+ (1 - 7 )Y¢ ,  (3.1) 

Bias(YA) ffi Y 'A - Y ' W  ffi ( 1 - 7)(Y© - Yw) (3.2) 

Proof. Let lv_AV ~ 1  and YvtV-~Y.  Application of 
matrix algebra yields the following equations. 

n,S~ --Yv "YI - n , ' ~ .  (3.3) 

I ' ( V  +YY' ) - t l  = lvlv" ( 1 +n,S 2) . (3.4) 
1 + Yv "Yv 

1 "(V +YY')-t y = lv "Yv . (3.5) 
1 + Yv ,Yv 

Substituting formulas (3.4) and (3.5) into (2.3) of the 
minimum MSE weights, we may verify that 

[ Y'Affi Yv'Yv " z 
1 +nS~ 1 +Yv'Yv + 

Y¢ 
, , . 

l + n S  2 
Using (3.3), we obtain (3.1). 
The formula of bias in (3.2) is obvious. [-I 

The form of (3.1) shows that, although y 'A  itself 
is not a shrinkage estimator, its expected value equals 
a Stein-type weighted average. In other words, y 'A has 
the same bias as a Stein estimator representeA by the 
fight side of equation (3.2). However, y 'A  has the 
smallest MSE, which is different from the MSE of any 
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compromise or other weighted estimates satisfying 
1 "W= 1. The following result is proved in Qian (1993). 

Theorem 3.2. For 7 as in Theorem 3.1, 

-A  ",CA -  )(Yo - Y . y ,  lh o. (3.6) 

[3 
It follows that 

MSE(yA) = ( 1 - o)(Y~ -Yw): + 1/n~. (3.7) 
Define shrinkage weights 

W^_a 7W + ( 1 - 7 ) W  ` , (3.9) 
and note that any weights on line from A to WA can be 

expressed as W * -c~A +( 1 -c~)W^, where c~ E [0,1]. 
The expectation of the weighted mean under weights 

W * is the same as that under the minimum MSE 
weights A: 

Y ' W  * ~Y'(c~A +(1 -c~)W^) 

~c~Y "A +( 1 -c~)Y'W A 
•Y'A, 

leading to the result that every weighted mean under 
weights on the line from A to W A has the same bias: 

Theorem 3.3. The weights W " on line from A to W A 

satisfy Y ' W  * =Y°A. [-3 

3.2 Empirical Estimates for the Minimum MSE 
Weights and Related Estimators 

The derivation of the matrix A has been of 
theoretical interest, but in practice A depends on 
unknown moments and cannot be calculated exactly. 
Using moment estimators, however, we may derive an 

estimate of A, say /~,, which has a form like (2.3). 

Although the form of A is relatively complex, the 

formula for the estimator of the mean, y--~ = y "/~,, is 
relatively simple: 

y 'A  = 1 - fi~ s2 - 
2 Ye + Yw 2 1 +fl~s~ 1 '+fl~s~ 

where we correspondingly define tic-a- ]~ l/vh,w~h_a 
- -  - -  2 ) 2  X/fic(l/vh), Yea ]~w, lYh, S~_a Ew, i ( ~ h - y ,  , and 

a fi.s2/(1 +fi~s.2). Notice that the sample-based mean 
estimator with minimum=MSE stratum weights from a 
stratified sample has the form of a shrinkage estimator, 
The application of shrinkage estimator can be viewed as 
an optimal compromise between a design-unbiased 

approach (Y-w) and a model-dependent approach (Ye)" 
In view of (3.6), a first-order estimator of the 

variance of y ' /~  may be taken 

A "v.~ =~(1  - ~ ) ( y e - y w )  2 + lifts. 
We may estimate the bias by 

y "/~, - y 3V=(1 -~)(Ye-Yw)" 

4. Results of Computer Simulation 
A computer simulation was employed to assess the 

estimates with empirical weights studied in this 
paper. These empirical weights are conventional 
weights W, minimum variance weights Wo minimum 
MSE weights W A, and the optimal shrinkage weights 
W B proposed by Cohen and Spencer (1991). (Cohen 
and Spencer defined a compromise between an unbiased 
estimator y,~ and another, "model-based," estimatory. 

is yB =0yw + ( 1 - 0 ) y . ,  where 

/ Are/(A~ + Am) if A ,  ~ 0 and A u > 0 
fl A 1 if A < 0  

0 othelwise 
with A ~ V ( ~ )  +Bias2(~) -Cov(y. ,  y.) andh.  

V(y-.)-Cov( L,  L). An .tim   is by 
substitution of sample moments for Am and A..) 

We drew stratified samples of U.S. counties and 
calculated alternative estimates of 1989 per capita 
income in the U.S., as ~.asured in the 1990 census. 
The target value is $14,420, the national per capita 
income obtained from 1990 census data. The population 
was clustered into 3141 counties, and the counties were 
stratified into 4 regions: with 217, 1055, 1425, and 444 
respectively. For a fixed sample size and sample 
allocation, we select a stratified simple random sample 
of clusters (Cochran 1977, 249) and repeated the 
sampling procedure 4150 times. For each sample, we 
can calculated each four mean estimates separately 
based on different types of weights. We calculated the 
empirical distributions of the estimators over the 4150 
samples as a means of comparing their sampling 
distributions. Two sample sizes were used in the 
simulation, 160 and 2199, and proportional allocation 
was used in each case. The results of simulation are 
listed in the table. 

For the smaller sample size (160), the biased 
estimators y-'~ and y~ have smallest RMSE, although 

their biases are small. In fact, the estimator y~ has 

smaller RMSE than YX" This shows that, although the 

RMSE of y^ is smaller than the RMSE of YB' this 
superiority need not hold when the weight matrix is 
estimated from the data. Thus, for the larger sample 
size (2199), y~, has smaller RMSE than Yb" The payoff 
from biased estimators decreases as sample size 
increases (and bias contributes a relatively larger share 
to RMSE), and the reduction in RMSE provided byyx 

compared to the umud unbiased estimator Yw is slight. 

Owing to the estimated weight matrix W~, the 

865 



estimator Yh actually has larger RMSE than Yw. For 
both sample sizes, the "minimum variance" estimator 
based on W e has the largest RMSE; again, as a result 
of estimation of the weight matrix, its variance higher 
than y~, for the smaller sample size and higher thany~ 
for both sample sizes. (Significance tests show that the 
number of replications was large enough that the 
differences among the moments are not due to the size 
of ttm simulation.) 

Simulation Results 
(based on 4150 replications; moments in thousands) 

- m  i • . . = ,  , , , ,  , ,  . , , , ,  ,. , , , 

Weights Samvle Size 
160 2199 

W BIAS 0.00 0.00 
SE 1.96 .64 
RMSE 1.96 .64 

W~ BIAS -.36 -.07 
SE 1.80 .63 
RMSE 1.84 .63 

wj mAS -.52 -.15 
SE 1.73 .61 
RMSE 1.81 .65 

W e BIAS -1.86 -.63 
SE 1.79 .65 
RMSE 2.58 .90 

6. Conclusions 
In this paper, we have derived adjusted stratum 

weights that minimize the MSE of the weighted sample 
mean. These methods may be desirable when the 
reduction in MSE is appreciable and the increase in bias 
is relatively small. Although not discussed here, 
generalizations of the methods used here lead to 
minimum MSE weights of a mean estimator subject to 
constraints on the amount of bias. The empirical 
estimates of minimum MSE weights and their related 
estimators are consistent and asymptotically normal. 
(Qian, 1993). 

An important feature of estimators with minimum 
MSE is that they are design-consistent. This paper has 
shown that the empirical mean estimator with minimum 
MSE weights from a stratified sample are equivalent in 
expectation to a Stein-type estimator. This connection 
reveals the relationship among estimates based on 
minimum MSE weights, minimum variance weights, 
and the familiar unbiased weights (reciprocals of 
selection probabilities). In particular, the Stein-type 
estimator is justified as an optimal compromise between 
a design-unbiased approach and a model-dependent 

approach to survey data. An inspection of the properties 
of the weights shows that bias classifies them into 
equivalence classes that form lines on a plane defined 
by the weights. 

Although our analysis focuses on the field of 
sampling, especially stratified sampling, the conclusions 
and methodology can be extended to other fields, such 
as panel data analysis, etc. The results have the 
potential to improve estimates as well as to provide 
guidance in trimming or shrinking weights. 
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