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ABSTRACT 

In complex surveys using stratified design involving 
large number of variables, a common problem is how 
to allocate samples in different strata such that the 
sampling errors of estimates of population totals or 
averages do not exceed certain preassigned upper 
bounds. This problem has been addressed by recent 
advances in computer algorithms based on iterative 
procedure known as convex programming. However, 
Convex programming is suitable for moderately sized 
problems. When number of variables and strata are 
large, it has certain disadvantages. An alternative 
approach is to define a distance function of the 
sampling errors of all the estimates. In this paper, the 
performance of such a distance function is 
investigated using census data on clothing industry 
collected by Statistics Canada. The results are 
presented and compared with the allocation obtained 
under convex programming. 
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1. INTRODUCTION 

In complex surveys involving large number of response 
variables, sometimes a stratified random sampling 
design is preferred. In the univariate case, sample 
allocation is termed as optimum in two senses. First • 
if the cost of the survey is preassigned, sample 
allocation is optimum if it minimizes the sampling 
error of the estimate of the population total on 
average. Second : if upper bound to the sampling error 
is preassigned, the allocation is optimum if it minimizes 
the survey cost. In the case of multiple response 
variables, following this analogy, we assign upper 
bounds to each of the sampling errors of estimates and 
then term the allocation as optimum if it minimizes 
survey cost. If however, the survey cost is preassigned, 
which is usually the case in most surveys involving 
multiple variables, there is no easy way to def'me which 
allocation is optimum, because there cannot be a 
unique set of minimum variances of the multiple 
estimates that we may wish to attain. To overcome this 
difficulty an aggregate measure of variabilities of all 
the estimates, in terms of a distance function of the 
coefficients of variation, has been proposed by Rahim 

and Currie (1993). This approach has been advocated 
from three standpoints. First • when survey cost is 
preassigned it is easy to def'me the allocation as 
optimum if this aggregate measure of variability is 
minimum. Second : if the survey involves a large 
number of response variables, there is not much point 
in being overconcerned that each of the individual 
variance constraints should be satisfied. For the sake 
of simplicity we might agree that it is good enough for 
all practical purposes as long as the aggregate measure 
of variabilities does not exceed its preassigned upper 
bound. Third :recently, Bethel (1989) has provided an 
improved algorithm for convex program, ming where 
he comments " The convex programming approach 
gives the optimum allocation to the def'med problem 
but the resulting cost may not be acceptable so a 
further search is usually required for an optimal 
solution .... ". This in turn requires increasing the upper 
bounds to the variance constraints which may not be 
acceptable either. Sample allocation by minimizing the 
distance function will not lead to such an anomalous 
situation because the resulting survey cost is expected 
to be substantially lower and therefore acceptable. This 
third stand point, in particular, has not yet ben verified. 
In this paper we investigate the performance of the 
aggregate measure and compare with that of convex 
programming using census data on clothing industry 
collected by Statistics Canada. 

2. MATHEMATICAL PRELIMINARIES 

• m 

In a stratified random sampling design, let y j denote 
m 

the estimate of the population averageY j of a variable 

Y j; j-. 1 ,2  . . . . .  J and S ~j the variance of Y j in stratum 
i; i= 1,2 .. . . .  I. Sample and population sizes are 
n = ~ n i and N = ~ N i. It is known that the variance 

i i 

of y j is given by 

2S2 - N2sZj Ni .... ,i, 

( 1 )  V ( y j ) -  . N 2 n i  ~ N2 

Bethel (1989) neglected the second term in (1) and 
m 

wrote the approximate expression for V ( y ) a s  
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(2) 
_ N i2Si2j 

Z " V ( y j ) - .  N~_n ~ 

In order to make our results comparable to his, we do 
the same. In that case we can write the coefficient of 
variation ¢ V ( y ) as 

u 

( 3 )  C V ( y j )  --- 
• N 2 n i  

u 

Yj 

The weighted distance function of the sampling errors 
ofyj; is defined as 

N ~ S  ~- l - I I " D2 = W i C V 2 ( 7 i  ) = Wi 2 --2 
i i , N n i Y j  

Where W l denotes weight representing importance of 
the variable Y l - T h e  individual sampling error 

comtraints C V (y  j) <- Ix i ; would imply a constraint 

o n  D Z a s  

N~S 2 ~-~. ~--~_ iJ < D~- ( 4 )  W i -'~_ - o 
i ~ N 2 n t  Y i 

Where 

Writing 

and 

A i i  

Do = i 

N~S~j 

N~-niV~Do 2 

1 
X i  = - -  

n i  

the constraint at (4) can be written as 

( 5 )  I I W j A t i x  ~ 
j i 

The usual cost function is written as 

z (6) 9 ( x )  = = C i X  i 

where c, is the cost of enumeration per unit in the 
i-th stratum. Our problem now reduces to minimizing 
g (x)  with respect to x, subject to constraint (5). This 
is equivalent to minlmi71ng a function F where 

: Z<,x, + > , ( zTw, ,< , , x ,  - .  ,) 
i l 

with respect to x, and h, the k being the Lagrange 
multiplier. We therefore solve the equations 

8F _____ci +KIW A =0 
( 7 )  8x~ x 2 i ~i 

i i 

8F_  I I W j A i j x  i l 0 
(8 )  8;X, i ~ 

and obtain 

( ; j  z K= c~ WjA~j 
• j 

Substituting this value of k in (7) we obtain the 
formula for sample allocation as 

( 9 )  x i ,/Tw. 
] 

C, 
Z Jc, Z 

i j 

For the sake of brevity, in what follows we will refer to 
allRcations by the formula (9) as simply 
"DZ-Allocation and the allocations by convex 
programming simply as "Convex-Allocation". 

3. EMPIRICAL STUDY OF THE 
CONVEX-ALLOCATION AND 

D2-ALLOCATION 

We used Statistics Canada's census data on clothing 
industry. Fourteen variables Yj; j - 1.2 . . . . .  1 4 
represent values of shipments of certain categories of 
clothing. These values were recorded for 
manufacturing industrial units classified into 9 strata 
by a combination of provinces of Quebec, Ontario, and 
certain revenue classes. We used Bethel's (1989) 
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algorithm for convex programming setting upper 
bound to the coefficient of variation of the estimates 

y' j at 0.051. For the same data set and with the same 

upper bound at 0.051 we obtained allocation using the 
formula at (9). We assigned equal weights to all the 
variables. The results are shown in Table 1. 

TABLE 1 

Strata Population Convex- D 2- 
size Allocation Allocation 

1 216 76 51 I 

2 342 141 80 

3 512 175 122 

4 467 210 175 

5 482 210 i 114 

6 100 33 30 

7 ,107 58 I 35 

8 369 180 153 

9 343 1 ! 1 6 6  126 

Total 3338 1249 888 

Based on the allocations shown in table 1 the 

coefficients of variation of the estimates y j were 

computed. These are shown in table 2. 

Variables 

TABLE 2 

Coefficients of 
variation of the 
estimates ~j 

Under 
Convex- 
Allocation 

i , i 

1 O.O44 
, , ,  

2 0.032 

3 10.043 

i 

Under D 2- 
Allocation 

0.052* 

0.037 

0.050 

4 0.032 

5 0.026 

6 0.030 

7 0.043 

8 0.043 

9 0.042 

10 0.043 

0.038 

0.031 

o i 
0.05O 

i , 

0.055* 

0.047 

0.049 

11 0.035 

12 0.029 

13 0.043 

I 

14 J 0.025 

0.043 

0.033 

0.047 

0.030 

* Cases when Cv's exceeded the upper bound 

It can be seen from these tables that the total sample 
size required under the convex allocation is 1248 which 
is 37% of the population size. This shows that the cost 
of survey would be rather high and may not be 
acceptable. On the other hand, under the 
D2-allocation the total sample size required is 888 
which is 27% of the population size. Thus the cost of 
survey would be less and therefore acceptable. 
However, under the latter procedure coefficients of 
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variation of 2 estimates exceed the upper bound of 
0.051. In view of the simplicity of the procedure and 
lower cost of survey this can be regarded as an 
ac£.eptable trade-off. Also it has to be stressed that the 
DZ-allocation procedure is intended when we have a 
very large number of variables and we are not that 
concerned about individual sampling error constraint 
as long as the average of the CV's of all the estimates 
does not exceed its preassigned upper bound. In this 
case the average comes out to be 0.043 which is less 
than the assigned upper bound 0.051. Thus our primary 
objective is satisfied. As an additionnal benefit, it is 
found that as many as 12 out of 14 individual 
constraints are also satisfied hence, the D2-allocation 
seems to be quite a good alternative to the convex 
programming. 

4. DISCUSSION AND SUMMARY 

In stratified random sampling design involving very 
large number of response variables, convex 
programming for sample allocation to different strata 
has certain disadvantages. Because the procedure is 
quite complicated and to ensure that all the individual 
variance comtraints are satisfied the total sample size 
required, and therefore the survey cost, often becomes 
too high and tmacecceptable. Therefore, in a recent 
paper Rahim and Currie (1993) proposed an 
alhernative approach based on minimizing a function 
D which is an aggregate measure of variabilities of all 
the estimates of population means or totals. In this 
paper, we have investigated a~d compared the 
convex-allocation and the DZ-allocatl'on using 

clothing industry census data of Statistics Canada. We 
f'md the performance of the D2-allocation to be quite 
promising particulary from the points of view of its 
simplicity, lower cost of survey, relatively few violations 
of individual sampling error constraints, and above all 
it ensures the aggregate measure of sampling errors 
below the assigned upper bound. This last feature is 
important because with large number of response 
variables we are interested only to control the sampling 
errors of estimates in an aggregate sense. 
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