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1. Introduction and Background 

The development of modem survey sampling is an 
extraordinary achievement (Bellhouse, 1988). Many of us 
in the U.S. federal government know or knew the early 
pioneers personally: Morris Hansen, Bill Hurwitz, and so 
many others(Hansen, 1987, Bailar, 1989). After all, much 
of the work was done in Washington -- starting with the 
lectures that Neyman gave in the 1930's when he was 
invited to the U.S. by W. Edwards Deming (Duncan and 
Shelton, 1978). 

Since those early beginnings, Neyman's insights about 
randomization-based inference (Neyman, 1934) have, of 
course, been expanded and elaborated. Subtle tools now 
exist for a range of practical settings. It must be added, too, 
that concerns about the limits of the randomization 
paradigm have also grown; this has been so, especially in 
recent years, with the rise in the "respectability" of 
model-assisted and even full model-based inferences from 
surveys (e.g., Samdal, Swensson, and Wretman, 1992 ). 

The very richness in the development of 
randomization-based designs may have had the effect, 
though, of isolating survey sampling from the rest of 
statistics -- where it is the richness of models that is given 
emphasis. In fact, it is a well-known commonplace that, in 
the main body of statistics, sampling is often disposed of by 
assuming that the random variables being observed are 
obtained from a sampling process that makes them 
independent and identically distributed (liD). 

Important techniques, like regression and contingency 
table analysis, were developed largely in this liD world; 
hence, adjustments are needed to use them in complex 
survey settings. Indeed, whole books have been written on 
this problem (Skinner, et al., 1989); and much time and 
effort have been devoted to it in software written for surveys 
(e.g., Wolter, 1985). 

With all that has been done already, can something 
more of value be added? We think we may have a small 
contribution to offer on how to deal better with the "seam" 
which currently exists between 1119 and survey statistics. We 
do not (yet) address model-based inference issues; but 
conjecture, nonetheless, that our approach might provide yet 
another viewpoint that could increase understanding of the 

various perspectives. 
Organizationally, the paper is divided into four 

sections. This introduction is Section 1. In Section 2 a 
general problem statement is provided and a proposed 
"resolution" offered. A concrete illustration of our ideas is 
given in Section 3, this has been taken from our practice 
and is based on a highly stratified Statistics of Income (SOI) 
sample of corporate tax returns(e.g., Hughes and Mulrow et 
al, 1994). Because of space limitations, the simulations 
done are only covered briefly in a concluding section 
(Section 4). It is there, also, that we discuss a few of the 
many next steps needed for our still embryonic ideas to 
grow useful. 

2. Problem Statement and Proposed "Resolution" 

Suppose we wanted to apply an liD procedure to a 
complex survey sample. Suppose, too, that we wanted to 
take a fresh look at "solving" the seam problem that occurs 
because the survey design is not IID. How might one 
proceed? Well, there is a familiar expression that may fit 
our approach-- 

If you only have a hammer, every 
problem turns into a nail. 

Now, as samplers, we have a hammer and it is 
sampling itselfl Can we turn the seam problem in surveys 
into a nail that can be dealt with by using another sampling 
design? 

It is our contention that some of the time the answer to 
0 

this question is "Yes." We call this second sample design an 
"Inverse Sampling Design Algorithm" -- hence, the name of 
this paper. 

A schematic might help visualize the algorithm (see 
next page). In the diagram two sampling approaches are 
compared -- both yielding simple random samples from a 
population: 

(1) The first design (top row) does this by employing a 
conventional direct simple random (SRS) selection process 
(e.g., Cochran, 1977), such that all possible samples of a 
given size have the same probability of selection. (Such 
designs are often impracticable or inefficient or both; hence, 
they are almost never used by survey samplers, despite their 
ubiquity in liD textbooks.) 
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(2) The second design envisions a two-step process. The 
first step is to sample the population in a complex way that 
focuses carefully on the nature of the population and the 
client's needs -- using the client's resources frugally (this is 
the survey sampler's province, par excellence). 

(3) What is new in our formulation is to draw a second 
(perhaps complex?) sample that inverts the first set of 
selections, so as to yield at the end a simple random sample. 
Of course, to employ this two-step process to draw a single 
simple random sample from the usually much larger 
complex survey would be inefficient, so we propose to 
create multiple simple random samples and base our 
inferences on them. 
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original complex sample). 

Notice some things that this approach is -- and is not: First, 
it is extremely computer intensive -- presupposing cheap, 
even very cheap computing. (For many of us in government 
this may not be true yet; but it is coming!) Second, it 
presupposes that practical inverse algorithms exist (which 
may not always be the case). Third, it also assumes that the 
original power of the full sample can be captured if enough 
subsamples are taken, so that no appreciable efficiency is 
lost. Fourth, as much as it may resemble the bootstrap 
(Eft'on, 1979), we are not doing bootstrapping. There is no 
intent to mimic the original selections, as would be required 
to use the bootstrap properly (e.g., McCarthy and Snowden, 
1985; Rao and Wu, 1988) --just the opposite; our goal here 
is to create a totally different and more analytically tractable 
set of subsamples fi-om the original design. 

3. An Example: A Stratified Sample 

Suppose that we wish to draw a simple random sample, 
without replacement, from a finite population of size N. 
However, the population is no longer available for 
sampling, but we have a stratified sample, with say four 
strata, taken from this population. The stratified sample 
was taken with fixed sample sizes nh from each stratum h, 
and known stratum population sizes, Nl + N2 + N3 + N4 = 
N. We need to select our simple random sample (without 
replacement) by resampling from this stratified sample. 
The largest simple random sample (SRS) that can be 
selected in this manner is of size m = min{nh}. 

To select an SRS of size m from the stratified sample, 
one must first determine the number of units to be chosen 
from each stratum. Using a probability distribution 
generator, select the vector of sample sizes, (m~,m2,m3,m4), 
from the hypergeometric distribution, so that: 

The nature of the algorithms we are talking about should, by 
this point, be obvious. They consist of just four basic steps: 

(1) Invert, if you can, the existing complex design, so that 
simple random subsamples can be generated (to some 
useful degree of approximation). 

(2) Apply your conventional statistical package (or perhaps 
model-based estimator?) directly to the subsample, since 
that is now appropriate. 

(3) Repeat the subsampling and conventional analysis, in 
steps (1) and (2), over and over again. 

(4) Retain, if you can, the flavor of the original 
randomization paradigm by using the distribution of 
subsample results as a basis of inference (rather than the 

Pr(ml=il, m,=i,, m:i3,  m4=i4 ) = 

(:) 
where i I +i2 + i3 +i4 - m and 0<i~ _<m, 0_<i2 _<m, 0<i 3 <m, 
0<i4 <m. 

After choosing the pattern of stratum sample sizes, 
(ml,m~,m3,m4), select a simple random sample of size m~ 
from the n~ sample units in stratum 1, an SRS of size m~ 
from the n2 sample units in stratum 2, etc. 
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This procedure will reproduce a simple random 
sampling mechanism unconditionally, i.e., when taken over 
all possible stratified samples. That is, for any given simple 
random sample of size m from the original population, the 
probability of selecting this sample will be 

1 

l/ N 

I11 

The probability of selecting a particular SRS is equal 
to the probability of selecting that SRS from the stratified 
sample, given that the SRS is contained in the stratified 
sample, multiplied by the probability that this SRS is 
contained in the stratified sample. For this given simple 
random sample, let (Xz,X2,X3,X4) denote the number of units 
in each stratum. Each x~ will be between 0 and m, and x~+ 
x2 +x3 +x4 = m. 

The probability that this SRS is contained in the 
stratified sample is equal to the number of stratified samples 
containing these m units divided by the total number of 
possible stratified samples 

/Nl xl// 2 x2)/N3 x3//N,x,  
n l - X  1 n2-X 2 el3-X 3 l~14-X 4 ,] 

Given that this SRS is contained in the stratified 
sample, the probability of selecting the SRS, using the 
method described, is equal to the probability of selecting the 
pattern (x~,x2,x3,x4), times the probability of selecting this 
SRS given this pattern, or 

(::)(::)(::)(::/ 
Multiplying this equation times the previous one shows 

that the probability of selection for this simple random 
sample, using the proposed method of subsampling from the 
stratified sample, is 

1 

For many applications, a simple random sample is 
much easier to use correctly than a complicated stratified 
sample data base. However, by subsampling from the 
stratified sample, we lose power both by decreasing the 
sample size, from n to m, and by losing whatever increase 
in precision was due to stratification. The following 
discussion gives an example of the trade-offs involved; also 
how this loss in power might be addressed. 

In the SOI environment at the Internal Revenue 
Service, our primary microdata users are very. familiar with 
our sample designs and quite knowledgeable about how to 
use the stratified sample of corporations being drawn. But 
we have other users who do not use our data regularly 
enough to be familiar with all the design's intricacies. We 
know of situations where our sample, having as many as 53 
strata, has been treated as if it were SRS. This can bias the 
estimates. 

To illustrate our concerns, we examine below data 
taken from four of the SOI strata (those for the smallest 
regular corporations). In particular, we will look at the 
mean squared errors of four estimators of the population 
mean: (1) the stratified sample mean, sample size n, (2) the 
mean from a simple random sample, with the same total 
sample size, n; (3) the mean using the largest simple 
random sample that could be subsampled from the stratified 
sample, m = min{nh}; and, finally, (4) the sample mean 
when the stratified sample is incorrectly used -- as if it were 
from a simple random sample. 

Since the first three are unbiased estimates, the mean 
square error is equal to the variance of the estimator. The 
last estimator is biased, and we use the bias squared for 
comparison; though this is only one component of the mean 
square error, it is the dominant component. 

Three variables are considered: total assets, variable A 
(which is a stratifying variable); net income, variable B 
(which is one component of another stratifying variable); 
the third variable, C, total taxes after credits, is not used at 
all in the stratification. 

In the following table, comparing the second row to the 
fu-st (where the fast has been normed to 1) shows the loss 
in power due to not using the stratification; the sample sizes 
are the same (n=l 5,618). Not surprisingly, the largest 
relative loss in power is for the primary stratifying variable, 
total assets. Comparing the third row to the second shows 
the further increase in variance due to the smaller sample 
size (m=2,224). These losses are more nearly the same for 
all variables. There is a very significant increase in the 
variance by using the smaller, subsampled SRS compared 

628 



to the original stratified sample (2x7, say, for net income -- 
variable B). 

Row 
1 
2 
3 

A B C_C_ 
I l I 
4+ 2- 2+ 
7- 7+ 7- 

Despite the above, an SRS subsample may be 
preferable to using the stratified sample incorrectly as a 
simple random sample (where the increase in mean square 
error is literally about 1,000 times greater). 

Drawing a single, smaller simple random sample from 
our larger, more complex stratified sample might be enough 
for some of our users. However, for other users the loss in 
power shown between the original estimates based on the 
stratified sample and the simple random sample may not be 
acceptable. 

As a means to increase the power of our approach, it 
was natural to consider resampling techniques. Take, for 
instance, the simplest case, where the user is interested in 
estimating means (or totals). By repeating the entire 
subsampling procedure, we can generate k simple random 
samples each of size m, where each SRS is selected 
independently from the given stratified sample. Each 
repetition must include both steps of the subsampling 
procedure, beginning with redrawing the stratum subsample 
sizes from the hypergeometric distribution. 

Let ,~.~ denote the mean of one SRS of size m 
subsampled from the stratified sample. Let ,~.. denote the 
mean over all km units in the k simple random samples each 
of size m. Finally, let ,~, denote the original stratified 
sample mean. Then, the increase in the variance using the 
km units, rather than the stratified sample, is 

Var ( .~ . . )  - Var( '~, t )  = { V a r ( ~ . , )  - Var (~ , t )  } / k .  

This follows since, conditional on the strat i f ied sample, 
the expected value of x.~ is equal to the stratified sample 
mean, x,. Because the k replications of the simple random 
sampling process are performed independently, given the 
stratified sample, then 

= g , , , ~ ,  : )  _ . f 2  

= v , , ( ~ , , )  

And 

: - 

: l i  E E 
k2 ~=I t=1 1.~ 

=± k' (k 

1 - + v,,(O) 

(This result can be generalized to all linear functions; and, 
approximately, to nonlinear functions that can be linearized 
by a Taylor series.) 

To give numeric content to the above, consider the 
variable total assets in the previous example, where the 
original stratified sample variance again has been normed 
to 1 . The following shows the normed variances of the 
sample means based on k simple random samples of 2,224 
each, for increasing values of k: 

k var(~) 

1 29.31 
2 15.16 

10 3.83 
100 1.28 
500 1.06 

1000 1.03 

By resampling 500 to 1000 times, the variance has 
for i,j ,  E(~~. ls tvat .sample )= g(~,tlstrat ) × g(~.jlstrat) been reduced to the same order of magnitude as the 

stratified sample. Even at 100 subsamples good results 
- ~st~ exist here (an insight we employed in our simulations, as 

mentioned in Section 4). 
Many SOl users, familiar as they are with liD statistical 

methods, would fmd an SRS more valuable and easier to 
Therefore, unconditionally, for i not equal to j, employ, than our complete, stratified sample data base. An 

interim goal might be to provide them with a set of simple 
random samples. A more flexible system would be to 
provide the interactive software to allow the user to 
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designate the simple random samples of interest, to be 
selected from the complete data base. 

4. Additional Considerations and Next Steps 

This section concludes with several short topics. First, a 
little more theory is given in connection with Section 3 -- in 
particular, how to estimate the variance without direct 
knowledge of the original sampling design. Second, some 
of our many simulation results are covered. Finally, there 
are discussions of next steps, plus concluding comments -- 
among them an invitation for possible joint work. 

A Little More Theory.--Let S 2 and X denote the 
population variance and population mean for the variable X. 
For the sample means and variances calculated from the 
generated simple random samples, let 

s /= m-1 (xf~'*)2 

Note that the sample variance using all km units can be 
expressed as 

s .=  ink-1 "-I)E +,,,E i=1 /=l 

Hence 

I - 

j=l 

Rewriting this gives 

E , k - 1  
j=l mk 

Therefore, by replacing S' and Var(,~j) with unbiased 
estimates and replacing E(s, 2) with s, 2, we can generate 
unbiased estimates of Var(,~,,). This result does not 

require the user to know anything about the original 
sample design. 

Some Simulation Results.-- An extensive series of 
simulations were conducted as part of our work on this 
problem. Space only permits a brief summary: 

(1) Pseudo-populations Created.--A version of the 
estimation problem set out in Section 2 was studied for 
n=156 and m=22. To do this, we generated a population of 
3,044 Multivariate normal observations 

z' = (total assets, net income, tax after credits) 

with the same means, variances, and strata definitions as in 
the SOI corporate population. 

(2) Estimation Research.--Repeated stratified samples were 
selected (10 in all). Then, from each of these, 100 
subsamples were drawn for study. To accompany the two- 
step SRS sampling, 1,000 one-step SRS samples were also 
drawn for comparison purposes. Quantile-quantile charts 
were employed in the analysis and these showed the 
expected agreement between the two SRS methods for the 
sample mean. (For this case, a direct comparison with the 
stratified sample is readily available, as has been seen.) 

(3)Hypothesis Testing.-- To accompany the estimation 
simulations discussed above, 2x2 tables were constructed 
from the same samples, to look at the relationship between 
total assets and net income. Each variable was split at the 
median; hence, under the null hypothesis of independence, 
the expected cell sizes were all 5.5. Both a chi-square and 
a Fisher exact test were conducted. Again, the one- and 
two-step SRS results agreed in distribution. 

(4) Initial Comments on Simulation.-- For Fisher's exact 
test, no readily available alternative exists in the stratified 
case -- so we are looking at an instance where the extra 
work involved in the two-step sampling may have real 
benefits, beyond just making it easier for users to employ 
familiar tools. For the chi-square test statistic we are now in 
the midst of comparing our results with the approach 
suggested by Scheuren(1972) and Fellegi(1980). Our 
belief is that the power of our method will equal or exceed 
these more familiar approaches. 

Next Steps.- - At best, in this paper we have done no more 
than shown that an inverse sample design algorithm exists 
in one limited setting -- that of stratified sampling. What 
about cluster sampling? multistage designs? and on and on? 

It would be great to be able to say that for these other 
(more?) interesting surveys that we have worked out 
general inverses or have a way to characterize when an 
inverse design exists(even approximately). At this point, 
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though, all we have are a few hunches about how to "invert" 
some of the more common designs. Instead of covering 
these, however, it may make sense to connect up what we 
have been talking about with some of the other problems we 
have as samplers and as government statisticians. 

First, it is worth emphasizing the customer-driven 
nature of our approach. Even if it could not be justified on 
other grounds, inverse algorithms might be advocated as a 
part of "reinvention" (e.g., Osborne and Gaebler, 1992). 
Right now many large complex sample surveys may not be 
sutficiently benefiting society, because they are so badly 
underanalyzed or even misanalyzed. Of course, we must 
work towards increasing the survey and other quantitative 
literacies of existing and potential customers. Nonetheless, 
for the short run, we need to start where they are -- giving 
due respect to the small part that survey data may add to 
their decisionmaking. Certainly it is worth thinking about 
ways to lower the cognitive costs customers bear when 
using our "products." 

Second, there is an increasing awareness of the 
weaknesses within the traditional randomization paradigm 
(e.g., Sarndal and Swensson, 1993). Of particular concern, 
here is all the fiddling we have to do when trying to correct 
for nonsampling errors. By putting the possible adjustments 
for these nonsampling errors back into a simple random 
sampling fi'amework, we may, indeed, be able to make more 
progress (e.g., on the current multiple imputation 
controversy). 

Third, many in this audience have done exceedingly 
complex sample designs and made elaborately efficient 
estimates from them. On the other hand, how much do we 
really understand about the distributions that our sample 
estimators generate? Will we be able to fully capitalize on 
the "visualization revolution" now occurring (Cleveland, 
1993)? particularly in the presence of nonsampling error? 
Maybe we should be building in a way to always look at 
distributions? This could help even the very experienced 
among us deepen our intuitions and connect them better to 
the particular population under study. 

Concluding Comments.--Many things are changing in our 
profession. We are remaking the way surveys are done: 
from design, to data capture, to the way customers use them. 
This paper may be a small contribution to the paradigm 
shifts underway. We hope so. 

Obviously, we have a lot more to do to develop the 
ideas presented here today. Please consider joining us by 
looking at inverse algorithms for your own surveys and 
comparing the results from them with existing methods of 
analysis. It is likely that taking up this challenge could lead 
to some very tough problems; on the other hand, it could be 
great fun too! 

References 

Bailar, B.(1989), Contributions to statistical methodology 
from the federal government, Sequicentennial Invited 
Paper Sessions, Proceedings of the American 
Statistical Association, 515-519. 

Bellhouse, D.(1988), A brief history of random sampling 
methods, Handbook of Statistics, 6, 1-14. 

Cleveland, W.(1994), Visualizing Data, Summit, NJ: 
Hobart Press. 

Cochran, W.(1977), SampBng Techniques, New York: 
Wiley. 

Duncan, J. and Shelton, W.(1978), Revolution in U.S. 
Government Statistics, 1926-1976, U.S. Department 
of Commerce, Washington. 

Efron, B.(1979), Bootstrap methods: another look at the 
jackknife, Annals of Statistics, 7, 139-172. 

Fellegi, I.(1980), Approximate tests of independence and 
goodness of fit based on multistage samples, Journal 
of the American Statistical Association, 75, 261-268. 

Hansen, M.(1987), Some history and reminiscences on 
survey sampling, Statistical Science, 2, 162-179. 

Hughes, S., Mulrow, J., Hinkins, S., Collins, R., and 
Uberall, B. (1994), Section 3, Statistics of Income-- 
1991,Corporation Income Tax Returns, 9-17. 
Washington, DC: Internal Revenue Service. 

McCarthy, P. and Snowden, C.,(1985), The bootstrap and 
finite population sampling, Vital and Health Statistics, 
Series 2, No. 95, DI-HqS Pub. No. (PHS) 85-1369. 
Washington, DC: Public Health Service. 

Neyrnan, J.(1934),On the two aspects of the representative 
method: The method of stratified sampling and the 
method of purposive selection, Journal of the Royal 
Statistical Society B, 97, 558-625. 

Osborne, D. and Gaebler, T. (1992), Reinventing 
Government, New York: Plume. 

Rao, J. and WU, J.(1988), Resampling inference from with 
complex survey data, Journal of the American 
StatisticalAssociation, 83, 231-241. 

Scheuren, F. (1972), Topics in Multivariate Finite 
Population SampBng and Data Analysis: George 
Washington University Doctoral Dissertation. 

S~imdal, C.-E., Swensson, B., and Wretman, J.(1992), 
Model Assisted Survey SampBng, New York: 
Springer-Verlag. 

S~irndal, C.-E., and Swensson, B.(1993), Washington 
Statistical Society talk on the shining nature of the 
survey sampling paradigm. 

Skinner, C., Holt, D., and Smith, T.(eds.)(1989), Analysis 
of Complex Surveys, New York, Wiley. 

Wolter, K.(1985), Introduction to Variance Estimation, 
New York: Springer-Verlag. 

631 


