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1. INTRODUCTION 

Most of the inferential results are based on the 
assumption that the user has a "random" sample, by 
this it is usually understood that the observations are a 
realization from a set of independent identically 
distributed random variables. However most of the 
time this is not true mainly for two reasons: one, the 
data are not obtained by means of a probabilistic 
sampling scheme from the population, the data are just 
gathered as they becomes available or in the best of the 
cases using some kind of control variables and quota 
sampling.; and second, even if a probabilistic scheme 
is used, the sample design is complex in the sense that 
it was not simple random sampling with replacement, 
but instead some sort of stratification or clustering or a 
combination of both was required. For an excellent 
discussion about the kind of considerations that should 
be made in the first situation see Hahn and Meeker 
(1993) and a related comment in Aguirre (1994). For 
the second problem there is a book about the topic in 
Skinner et a1.(1989). In this paper we consider the 
problem of evaluating the effect of sampling 
complexity on Pearson's Chi-square and other 
alternative tests for goodness of fit for proportions. 
Work on this problem can be found in Shuster and 
Downing (1976), Rao and Scott (1974), Fellegi (1980), 
Holt et al. (1980), Rao and Scott (1981), and Thomas 
and Rao (1987). Out of this work come up several 
adjustments to Pearson's test, namely: Wald type tests, 
average eigenvalue correction and Satterthwaite type 
correction. There is a more recent and general 
resampling approach given in Sitter (1992), but it was 
not pursued in this study. 

The paper is organized as follows: section 2 reviews 
some general large sample results regarding Pearson's 
and Wald type tests for this problem, special 
consideration is made for stratified and two stage 
cluster sampling. Section 3 gives some easy to compute 
adjustments to Pearson's test that use the large sample 

results of section 2 in terms of a function of the 
eigenvalues of the large sample distribution. Section 4 
presents the results of comparing the various statistics 
under different populations and sampling schemes, 
significance levels are compared. 

2. LARGE SAMPLE RESULTS. 

Consider the problem of testing that the population 
proportions of a categorical variable X with k possible 
values has some predetermined values, against the 
alternative that for at least onb category they are 
different. That is, if we let 

P ( X = i ) = p  i 
then we want to test 

H0: Pi = P0i for every i = 1 ..... k 
Hl 'Pi  not equal to P0i for;some i 

Pearson's chi-square test is given by 

h 

X2p = n Z ( P i - Poi)2/ Poi 
i=l 

where/3 i is a consistent estimator of Pi under the 

sampling scheme used. 

It is easy to show, Serfling (1980), that for simple 
random sampling with replacement (SRSWR) X2p has 
an asymptotic chi-square distribution with k-1 degrees 
of freedom (z2(k-1)). A more general result given in 
Johnson and Kotz (1970) states that under H 0 X2p is 
distributed asymptotically as 

k--| 

Z L0 i Zi 2 
i - I  

where the Zi 2 are independent chi-square random 
variables with one degree of freedom, and the ~'oi's are 
the eigenvalues of the matrix of design effects defined 
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Do = P0" 1 V0 

if we let P0 be the column vector of probabilities under 
the null hypothesis then the matrix P0 is defined by 

Po = diagonal (Po)- PoPo t (1) 

and the matrix Vo/n is the variance covariance of /3  

under H o, under simple random sampling Po and V 0 
are the same and hence the eigenvalues are all equal to 
one and one gets the previous result, but under a 
complex sampling plan that is no longer the case and 
the large sample distribution is not a z2(k - 1). 

It may be shown that Pearson's test is a quadratic form 

of the vector/3 - Po with Po in the middle, that is why 

the z2(k-1) is right for SRSWR and wrong under a 
complex sampling. One way to get around this problem 
is to use the correct matrix for the quadratic, this is the 
Wald type test statistic. In general the test statistic may 
be written as 

X2W= n(/3- po) t V-1 ( t3-  Po) 

with V/n the asymptotic variance covariance matrix of 

t3 under the corresponding sampling plan and under 

the null hypothesis. The matrix V depends heavily on 
the sampling plan being used, to see this we will 
consider two cases: stratified random sampling, and 
cluster sampling. 

/3 h = sample estimate of Ph 

L 

b = E WhPh 
h=l 

for stratified random sampling with proportional 
allocation and SRSWR within each stratum V 
becomes, see Rao and Scott (1981): 

if we let 

L 

V=P- E Wh(Ph -p)(ph-p)t 
h:l 

nh 

fh - (nh (nh - l ) ) -I  E (Y:h -- Ph )(Y:h -- Ph) '  
j:-I 

then a consistent estimator of V is 

L 
I~ = n E W h 2 f h  

h=l 

in the Monte Carlo study we are going to consider two 
different Wald tests, XXWA with V in the Middle and 

X2wR with V. Of course X2WA can not be computed 
from the sample but we wanted to observe the possible 
performance of Wald's test when there is no sampling 
variation in the estimation of V. 

Stratified random sampling. 

Consider the following notation: 

L= number of strata 
Nh= number of elements in stratum h 
N= number of elements in the population 
Wh=Nh/N 
n h = sample size stratum h = nW h 
Yjhi = 1 if the j-th element of the sample from 

h-th stratum belongs to the i-th category, 
and zero otherwise 

Yjh = vector with entries Yjhi 
ph = vector of strata proportions of each 

category 
p= vector of population proportions of each 

category 
P= matrix defined in (1) with p 

Two stage cluster sampling 

We consider two stage cluster sampling with first stage 
selection made with probability proportional to size of 
the cluster, and the second stage SRSWR. For this 
purpose let 

R= Number of clusters in the population 
N= Total number of elements in the 

population 
r = Number of clusters in the sample 
Mi= Number of elements within the i-th 

cluster 
m I = number of elements in the sample within 

the l-th cluster 
n = Total sample size = r m 
Wi= probability of selection of the i-th cluster 

=Mi/N 
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Pi = vector of cluster proportions for each 
category 

/3j = the vector of within cluster sampling 
proportions, j= 1,2, .... r 

j=l 
p= vector of population proportions of each 

category 
P= matrix defined in (1) with p 

then Rao and Scott (1981) mention that 

R 

V = P + (m-l) ~ W~ (Pc -P)(Pi - P)' 
i=1 

an unbiased consistent estimator of V is 

l ~ = m ~ (/3j-/3)(/3j-/3) t 
j=l 

As before, for the Monte Carlo study we considered 
two different Wald Type tests X2WA and X2WB . 

It is clear from these two examples that the impact of 
sampling complexity on the test statistic is through the 
difference between V and P. 

3. ADJUSTMENTS VIA EIGENVALUES. 

Notice also that Wald type B test statistic require the 
estimation of the whole V "l, this is usually done by 
estimating V first, as shown above, and then inverting 
the estimator. This procedure may be numerically 
unstable as will be shown in the simulation results. An 
alternative to this task is shown in this section, instead 
of estimating a matrix, the adjustments depend on 
some functions of the eigenvalues which in turn are 
simple functions of the elements of V. 

First consider the average eigenvalue adjustment 
(AVE), it consists of dividing Pearson's test by the 
average of the first k-1 eigenvalues. The rational is as 
follows, under sampling complexity 

L k-I 
X2p -~  E koi Zi2 

i=I 

if we let 

then 

k-I 

L 0. = (k- 1)- 1 E Z'0i 
i=1 

L k-I 
X2p / 2L0" "+ Z (L0i / 2L0" ) Zi2 

i=1 

if the eigenvalues are not too far apart then the limiting 
distribution would be approximately x2(k - 1),  see Rao 
and Scott (1981). The nice thing about this correction 
is that it is very simple to compute an use, because 

k 

Z,0.= tr(P-1 V) = Z vii / (Pi [ k - 1 ]) 
i=1 

where vii are the diagonal elements of V, therefore a 
consistent estimator X. can be obtained by replacing the 
sample counterparts into the above formula. And from 
a direct application of Slutsky's theorem we get 

L k-1 
X2AVE = XZP / ~" --~ Z (~'0i / ~0" ) Zi2 

i=l 

Applications of this idea may be found in Holt, Scott, 
and Ewings (1980). It is important to notice that it is 
an empiricalprocedure that has given good results in 
practice. 

We now consider Satterthwaite (1946) correction, it is 
based on the observation that the limiting distribution 
of X2p is a weighted sum of mean squares with one 
degree of freedom each, from here the correction 
consists of approximating the  distribution of the 
random variable with a Chi-square distribution where 
the number of degrees of freedom are estimated. In this 
paper we adopt the form of Satterthwaite's' correction 
(SAT) for X2p given in Rao and Scott (1981) 

X2SA T = X2p / (k. (1 +a2)) 

where 

and 

][--I 

i-1 
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k-1 k k 

i=1 i=1 j=l 

the VF'S are the elements of V. To check for tj 
significance X2SA T is compared with a critical value 
from a Chi-square distribution with (k-1)/(l+a 2) 
degrees of freedom. 

Notice the computational advantage of X2AV E and 
X2SAT , they are based on the usual X2p and just 
require the estimation of some simple functions of the 
elements of V. 

4. MONTE CARLO RESULTS. 

For the Monte Carlo study we considered stratified and 
cluster sampling, two population sizes (500 and 1000), 
and two sampling fractions (.1 and .2). In cluster 
sampling we considered two cluster sizes (20 and 
variable). The program that performed the simulations 
was programmed using Lotus-123. The populations 
were generated with the true P0 equal to (.1, .4, .4, .1). 
To form the strata, the population was ordered first and 
then broken down in a proportion .4, .2, .4. For cluster 
sampling with five hundred elements, the population 
was just broken down in 25 clusters. For the population 
of size one thousand, there were five clusters of size 
one hundred, five of size fifty, and ten of size twenty 
five,Tables l a and l b show the specific scenarios for 
the simulation as well as the proportion of test statistics 
that exceeded the 5% critical point after 200 
replications.The first for correspond to stratified 
random sampling, while the rest are cluster sampling. 
We also analyzed the 10%, 2.5%, and 1% tails, the 
results were similar. 

It is easy to spot from table 1 that the best test was 
X2WA , while the worst was X2WB . To see the 
situation, figure 1 shows the empirical sizes of the tests 
stratified with respect to sampling plan. Pearson's test 
is conservative in stratified sampling, and becomes 
much more liberal in cluster sampling. Type A Wald 
test is OK under both sampling plans. Type B Wald 
test, the one that would be computed from the sample 
data, is invalid under both sampling schemes, it is 
worst under cluster sampling. Pearson's average 
correction is above 5% under both sampling plans, but 
not too far away, particularly in cluster sampling. 
Pearson's Satterthwaite's correction behaves similarly 
to the average correction under stratified sampling, but 

is much better under cluster sampling, in fact it is quite 
similar to X2WA. 

Pop 
Size 

500 
500 
1000 
1000 
500 
500 

. ,  

500 
1000 
1000 
1000 
1000 
1000 
1000 

Sampling Cluster 
Fraction 
.1 Strat 
.2 
.1 
.2 
.1 Clust 
.1 
.2 

Size 
n/a 
n/a 
n/a 
n/a 
20 
20 
20 

.1 variable 

.1 

.2 

.2 

.2 

variable 
variable 
variable 
variable 
variable 

X2p X2w~, X2wR 

3.5 7.0 15.5 
2.0 4.0 7.0 
1.5 6.0 11.0 
5.5 7.5 16.5 
10.5 5.0 19.5 
15.5 6.0 48.0 
17.5 4.0 23.0 
8.5 6.0 19.5 
6.5 4.0 39.0 
6.0 4.5 12.0 
14.5 5.5 27.0 
20.5 6.0 47.5 
7.0 3.5 7.5 

Table l.a. Percent of test statistics exceeding a 5% 
critical point. Tests: Pearson, WA, WB. 

Pop 
Size 
500 
500 
1000 
1000 
500 
500 

, , ,  

500 
1000 
1000 
1000 
1000 
1000 
1000 

Sampling 
Fraction 

Cluster X2AVF. X2NAT 
Size 

.1 Strat n/a 

.2 n/a 

.1 n/a 

.2 
• 1 Clust 
.1 
.2 
.1 
.1 
.1 
.2 
.2 
.2 

n/a 
20 
20 
20 
Variable 
variable 
variable 
variable 
variable 
variable 

15.0 17.0 
6.5 7.0 
6.5 6.5 
15.5 16.5 
7.0 3.5 
8.5 5.0 
5.5 3.5 
7.0 6.5 
6.0 6.0 
9.0 6.0 
7.5 5.5 
10.0 7.0 
4.5 3.5 

Table l.b. Percent of test statistics exceeding a 5% 
critical point. Tests: AVE, SAT. 
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Figure 1. Comparison of tests. Nominal size 5%. 
Sampling: stratified (odd number), cluster (even 

number). Pearson's Test: 1 and 2, Wald A Test: 3 
and 4, Wald B Test: 5 and 6,Average correction: 7 
and 8, Satterthwaite' s correction: 9 and 10. 

To learn a little more about the performance of the 
tests, table 2 gives the correlation coefficients of the 
empirical sizes of the tests. 

Figure 2 shows the association between the sizes of 
XWA and XAVE, it is interesting to see that they 
behaved similarly, although the impact of sampling 
complexity on XAVE was stronger. 

5 

4 
4, 

4 t O ~  

4P 

t o t  

o 5 10 15 29 
X~AE 

Figure 2. Dispersion diagram of empirical sizes for 
tests XWA and XAVE. 

i 

X2p 

X2wA -.023 
X2wn .732 
XZAv~ -.135 
X2~AT -.396 

I [ilWL ' 

.167 

.822 .036 

.745 -.'164 ' .926 
| 

Table 2. Correlation between empirical sizes of the 
tests. 

From that table one can see that: 
a) There is no correlation between Pearson's 
test and X2WB, which is bad 
b) Pearson's test and X2wB are correlated, 
something bad too 
c) X2AV E and X2SA T are correlated with X2WA 
, something favorable 
d) X2AVE and XEsAT are correlated, as 
extracted 

5. SUMMARY AND CONCLUSIONS. 

The paper shows the importance of sampling 
complexity in the performance of goodness of fit tests 
for proportions. Pearson's test was conservative under 
stratified sampling and liberal under cluster sampling. 
Wald's test had by far the worst performance of all 
tests, this was caused by the estimation of inverse of 
the variance covariance matrix of the vector of 
estimated proportions, a better estimation of this 
inverse would result in an improved test that may 
perform well under both kinds of sampling. Eigenvalue 
corrections behaved similarly but Satterthwaite's test 
performed much better in cluster sampling. 
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