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1. I n t r o d u c t i o n  

Multiple imputation (Rubin, 1987) is a general 
and efficient method for statistical analyses with 
incomplete data, and is especially suited for 
handling nonresponse in large sample surveys that 
produce public-use data files. Its development is 
guided by Bayesian principles and calculations with 
sensible frequentist evaluations, especially under the 
randomization perspective, to ensure its general 
applicability and validity. Recent development and 
overview of multiple imputation techniques can be 
found in Meng (1994) and aubin (1995), both of 
which also contain extensive citations of literature 
on studies and applications of multiple imputation. 

Briefly speaking, the major task of multiple 
imputation is to construct a sensible imputation 
model, implicit or explicit, to describe the predictive 
distribution of the missing values given all of the 
available data and information; this work is best 
accomplished by the data collectors (e.g., U.S. 
Census Bureau). Once such a model is built, the 
imputer creates m(> 2) sets of imputations by 
making m draws from the imputation model. Each 
set of imputed values is then added to the set of 
observed values to form a "completed" data set. 
Given m such completed-data sets, a user applies 
the standard complete-data procedure that he would 
have used if there were no missing data to each of 
them. He then combines these m analyses to form 
one multiple-imputation inference. 

Forming multiple-imputation point estimates 
is straightforward, as reviewed in Section 2. 
Hypothesis-testing with multiply-imputed data sets 
is somewhat more complicated because we cannot 
directly combine p-values from the complete-data 
testing procedure as it does not take into account 
the extra variability due to the imputations. Various 
hypothesis-testing procedures have been proposed in 

the literature (e.g. Li, 1985; Li, Meng, 
Raghunathan, and Rubin, 1991; and Meng and 
Rubin, 1992). One key assumption made under 
these procedures, which is necessary to simplify 
the computations, is that the fractions of missing 
information, to be defined in Section 3, are the 
same across all of the different components of the 
parameter vector being tested. This is obviously 
a strong assumption that will rarely hold in 
practice. Fortunately, however, simulations as well 
as empirical studies have shown that the resulting 
procedures are not too sensitive to this assumption 
when the variability among the fractions of missing 
information is not too high (e.g., Li, Raghunathan, 
and Rubin, 1991; hereafter LRR). Nevertheless, the 
performance of these procedures, in terms of both 
level and power, decays as the variability increases. 

The purpose of this paper is to report 
some initial efforts and findings in attempting to 
establish testing procedures that do not rely on the 
assumption of equal fractions of missing information. 
After presenting the necessary background in 
Section 2, we review in Section 3 the procedure 
proposed by LRR, which is an approximation to a 
Bayesian p-value. We then describe in Section 4 a 
potential extension of LRR's procedure. In Section 
5, we discuss the computation of the exact Bayesian 
p-value underlying LRR's procedure, as well as the 
interesting finding that LRR's approximation has 
better frequentist properties than the Bayesian p- 
value it approximates. Finally, Section 6 discusses a 
difficult problem our extensions have to face - -  the 
possibility that the dimensionality of the parameter 
being tested is at least as great as the number of 
imputations. 

2. Background  

Suppose 0 - t~(X) and U - U ( X )  are an 
efficient estimate of a k-dimensional population 
parameter, 0, and its associated variance-covariance 
matrix, respectively, in which X is an n x k complete- 
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data matrix. In the presence of missing data, we 
write X = (Xob,, X,~i,) in a convenient, but possibly 
imprecise notation. With multiple imputation, let 
x(J ) (Xob,, (~) - -  Xmi 8),~. - 1 , . . . , m ,  be the m 

completed-data sets. We then compute (~,l = 
0(X, (L)) and U,l -- U(X(,t)), for each ~ -  1 , . . . ,  m, 
and we write ,~m - {(~,l, U,l, £ - 1, 2 , . . . ,  m} for 
notational simplicity. 

Given 8m, the multiple-imputation estimate of 
0 is a simple average 

m 

o-m - 
m 

l = l  

The variance associated with 0,~ is 

T,~ - 5rm + (1 + 1 )Bin ,  

where 

- - - -  V , l  
m 

l = l  

is the within-imputation variance, and 

Bm --" 

1 m 

m -- 1 E (O* l  -- 0m)(0*t -- Ore) 
I=1 

is the between-imputation variance. The Bayesian 
derivations and frequentist evaluations of these 
procedures can be found in Rubin (1987, Ch. 3, 4). 

For hypothesis testing, Rubin (1987, Ch. 3) 
derived a Bayesian p-value, which induced a testing 
procedure that was studied in detail by LRR. Here 
the Bayesian p-value for a null hypothesis H0 • 0 - 
00 is defined as the posterior probability of all 0 
whose posterior density values are no less than that 
of 00. Under the assumption that the imputation 
model is "proper", Rubin (1987, Ch. 3) shows that 
the Bayesian p-value, under the constant prior on 
0oo ( -  l in~  0,~) given Boo (= limm B,~) and the 

_ 

assumption Uoo ~ Urn, is 

P(Ool&) - 

/ 1 
Pr{;)C~ >_ (Ore -00)T[~rm "~" (1 +- - )Boo]  -1 

m 

x (0-~ - Oo)}Pr(Boo[Sm)dBoo (2.1) 

in which Pr(Boo[Sm)is a posterior density of Boo 
given ,-qm. The computational difficulty of (2.1) is 

caused by the averaging over the posterior density 
Pr(Boo ]Sin), especially when k > 1. 

3. Th e  C u r r e n t  Bes t  P r o c e d u r e ,  Pm 

The procedure of LRR is obtained by 
considering the simplest case for (2.1), when Boo - 
AUoo, where X is a scalar quantity. This is equivalent 

to all eigenvalues of 0~o ½ Boo 0~o ½ being equal, A1 - 
• "" - Ak -- A. In other words, LRR assumed that the 
relative increase in variance due to missing data is 
the same for any component of O, an assumption that 
greatly simplifies the computation because it reduces 
a k-dimensional problem into a one-dimensional one. 

Specifically, under the non-informative prior 
- 1 ~r(A) cx A-1 , the posterior distribution of (1 + ~)A 

X -2 where is r ink (m-  1) k(m-1), 

1 
r.~ - ( 1  + --)trace(BmUynl)/k 

m 
(3.1) 

is a consistent estimator of ~ (in general, rm esti- 
mates the average of {A1,.. . ,  Ak}). Consequently, 
(2.1) is simplified to 

_ _  [ ] P(Ooi3m,Boo =AUoo)-  Pr{x~ >_ 1+ 2 rm 
Xk(m-1) 

× - - 0 0 ) } .  

- 1  

By approximating(l+rm)(l+rmk(m-1)/Xk(m- 1 ) ) 2  -1 
with an mean-squared random variable, Rubin (1987, 
Ch. 3) constructed the following statistic for testing 
Ho " 0 - 0o" 

(o-m - Oo)r;,; (Om - Oo)T, Dm 
k[l + "m] 

where rm is given in (3.1). A good approximate 
frequentist reference distribution for Dm was given 
in LRR, which yields an approximate p-value 

P , ~ -  Pr[Fk,~ > Din], (3.2) 

where 

v 1 
~ ( l + ~ ) [ l + r ~ l ]  2, i f v - k ( m - 1 ) < 4 ;  

W - -  

4 + (v - 4)[1 + (1 - -2)r~112, otherwise. 
V 
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A problem with LRR's procedure is that  as 
m --+ oo, unless Boo - )~Uoo holds exactly, Dm does 
not converge to the ideal test statistic 

( ~  - e0)TT:~(~o -O0) 
Dideal  --  k ' 

where Too - limm Tin. The corresponding ideal p- 
value is 

P i d , ~ , -  P r [ x 2 / k  > Did,~,]. (a.a) 

This is called ideal because it is based on an infinite 
number of imputations. This I~d~at is taken in 
LRR as the ideal level that  Pm approximates (the 
subscript ideal is used here instead of the original 
obs used by LRR to include the "uncongenial" cases; 
see Meng, 1994, for detail). 

The difference between Doo and DideaZ was 
studied by LRR. For example, they found that,  

under H0 • 8 - O0, 

V a r ( D o o ) -  Var(Didea,)(1 + C~), 

and 
Corr(Doo,  Didea,) - (1 + C~)-  ½, 

in which C~ is the coefficient of variation for the 
~j - 1 + Aj, j  - 1 , . . . k  (the fractions of missing 
information are actually 1 -  1/{j), that  is , 

k lq-Ai  2 
1 (I+X) . 

LRR also gave similar expressions under alternative 
hypotheses. Based on both theoretical and 
simulation studies of level and power, LRR 
concluded that  Doo is satisfactory as long as C~ 
is not too big (e.g, C~ < 40%). The loss of 
power, however, does increase with the value of 
C~. For example, LRR's simulations show that  
the maximum relative loss of power is 6% when 
C~ < 20%, but the loss doubles when C~ - 40%. 
Our a t tempt  here is to see if this loss of power can 
be recovered by relaxing the restrictive assumption 

Boo - AUoo. 

4. A P o t e n t i a l  E x t e n s i o n  o f  P.~ 

An obvious approach in relaxing the assumption 
Boo - )~Uoo is to estimate the individual eigenvalues 

- -  _ ~ ½  

of Uoo]BooUoo. This leads to the following 
procedure, which estimates the eigenvalues of 

_ 1 _ 1 

Uoo BooU~7, Aj, j - 1 , . . . ,  k by the eigenvalues of 
- _ 4  - _ 1 _  ^ 

Um 2 Bm Um 2, $j , j _ 1 , . . . ,  k. The four steps of this 

procedure are" 
_ 1 

S t e p  1. Find U~ ~ and compute 

~ - _ !  - _ !  

B,~ - U~ ~ Bm U,~ ~ 

S t e p  2. Find Fm such that  

[~m - Fmdiag( i l ,  . . . , i )r% 

S t e p  3. Compute 

__ ~ ' '  , )T & r%oC  (o- -O0l-(0m,1 .,0m  

S t e p  4. Compute (via simulation) 

k " 2  

-- .= 1 +(i A- 1 ) × . . _ , , ~  
}, (4.1) 

where all X 2 variables are mutually independent. 
As expected, this procedure is theoretically 

superior to P,~ because it converges to the ideal 
procedure as m --+ oo" 

P~)  Pid~,z R e s u l t .  limm_.oo - . 

P roof :  Referring to (2.1) and (4.1), we need only 

show that  

k "2 

j~ l  ~m,j 
1 m2-1 .= 1 + ( 1 + ~ )  ij 

X m - - l , j  

--+ k D i d e a l ,  as m ~ c ~  

Because m- i  X 2 
m - l , j  

converges to 

--+ 1 a s m  --+ oo, the left side 

_ __½ i -i __½ _ 
( e ~ o - e 0 ) T o = ½ [ I k  +Uoo BooO£ ~] Uoo (e~o-e0) 

as m --. oo. This is kDideal, because Uoo +Boo - Too. 

We do, however, see several shortcomings of 
this procedure. First, while p(e) is theoretically 
superior to P,~ for large m, it may be less stable 
for small m because it requires estimating all 
k eigenvalues instead of just their average. In 
fact, if m < k, then we do not have enough 
degrees of freedom to estimate all k eigenvalues, 
as further discussed in Section 6. Secondly, the 
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computation of p(e) involves much more work than 
the computation of Pm does. We need to calculate 
p(e) by Monte Carlo simulation. However, because 
we only need to draw k independent X,n-12 variates, 

the simulation is straightforward. Thirdly, P(~) 
is still not the exact Bayesian p-value of (2.1) 
because the posterior of (A1,...,Ak) is generally 

~l~m-1) ~,k(m-1)) In fact, this is only not (x;~_l,1 ' ' ' "  x~-l,k " 
true if r , ,  - too. Nevertheless, this procedure 
has the virtue of having the correct limit, and 
at the same time avoids the full integration over 
Pr(Boo[,~m) required by (2.1). The frequentist 
properties (e.g., level and power) of this procedure 
are under investigation. 

5. The  Exac t  Bayes ian  p-value 

Since the procedures in Sections 3 and 4 were 
motivated as an approximation to the Bayesian p- 
value given in (2.1), we have also considered the 
direct computation of (2.1). This will not only 
serve as a standard against which we can check our 
approximations, but can also be used as a procedure 
itself. 

The exact value of (2.1) depends on the prior 
for Boo. Under the standard non-informative prior 
~r(Boo) ¢x IBoo I -(k+t)/2, (2.1) becomes 

1 P(t~olS~)- Pr{x~ >__ (0~ -0o)T [O'rn -]-(1 +- - )X 
m 

(m - 1)Bin ½W-tBm ½]-l(0m - O0)} (5.1) 

where W .~ Wishartk(m- 1, Ik). This p-value can 
be simulated by drawing a large number of Wishart 
variates, calculating the quantity to the right of the 
">_" sign each time. Then, the average tail area of 
the chi-square distribution with k degrees of freedom 
is an estimate of the p-value. This is, of course, 
even more demanding computationally than D(~), 
but is still feasible, especially if it becomes part of a 
software package. 

Our simulation results reveal an interesting 
phenomenon, that is, for small m, this Bayesian 
p-value does not  perform as well in terms of level 
and power as Pm of (3.2), which was derived as 
a simplification and approximation of (5.1)! The 
reason for this, we believe, is that the "non- 
informative prior" for Boo used in (5.1) is in fact 
informative, and for small m, there is not enough 

"data" to correct the artifact in the prior. In 
contrast, in deriving Pro, LRR directly considered 
the sampling distribution of D,~ when constructing 
its reference distribution, and thus lessened the 
impact of the prior. This finding suggests that we 
need to expand the family of priors in constructing 
our extensions, and also reinforces the idea that the 
ultimate criterion for our procedures must be direct 
frequentist evaluations, like those presented in LRR. 

6. A C o m p l i c a t i o n  w h e n  m < k 

A major difficulty in attempting to drop the 
assumption of equal fractions of missing information 
is when the dimension of O, k, is not less than the 
number of imputations, m. The problem is that we 
do not then have enough data or degrees of freedom 
to estimate the k eigenvalues. In other words, 
the Wishart distribution in (5.1) would be singular. 
Thus, the singular Wishart distribution, usually only 
considered theoretically, becomes important in this 
application. We are currently looking into this 
problem. 

For p(e), when m <_ k, we can only estimate the 
m - 1  largest eigenvalues of Boo ; at least k -  m + 1 of 
the ~j's are zero because the rank of/~m is at most 
m -  1. The question then is how to estimate the 
remaining k -  m + 1 eigenvalues, and the choice of 
the prior becomes critical. In deriving p(e), we chose 
a uniform prior on the logarithms of the A's. In this 
case, the remaining k -  m + 1 eigenvalues would be 
set to zero due to the spike in the prior at zero. 
This would obviously result in a liberal procedure, 
and to what degree this approximation is acceptable 
needs to be investigated. One alternative to create 
a conservative procedure is to set the unestimable 
eigenvalues to the smallest non-zero eigenvalue of 
Bin. A more reasonable approach would perhaps be 
to assign a uniform prior for .kin,..., Ak on Am-1 >_ 
~.~ >_...>_~k. 
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