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Back~ound 

Imputation of missing data is commonly used to 
create completed data sets for complex sample surveys. 
To calculate variance estimates, the imputed data is 
usually treate~ as real data. This can lead to 
underestimation of variances. Examples of the potential 
effect of ignoring such nonresponse can be found in 
Rao and Shao 1992. In that paper the authors show 
that the relative underestimation of conditional variance 
given p the sample nonresponse is 

Relative Bias = -(1 -p 2) (1) 
1 +pq 

for a jackknife variance estimator assuming simple 
random sampling and a simple hot deck imputation 
process. Under these conditions even a relatively high 
response rate say p = .95 can still ~ l t  in a 9% 
underestimate of variance. (Note, the response rate we 
are discussing is generally an item nonresponse rate for 
partial respondents among all units considered as 
respondents in the overall survey. Thus a survey could 
actually report an 80% response rate, but have a very 
small item nonresponse among this 80% of the units. 
Corrections for the first nonresponse are usually made 
by reweighting essentially assuming that a smaller 
sample was selected.) 

Until recently the only general method of producing 
a robust variance estimate using complex survey data, 
which considered nonresponse, was Rubin's multiple 
imputation method (Rubin 1987). This method requires 
imputing the missing data multiple times. The multiple 
data sets are then used to produce several estimates and 
several variance estimates. The average of the variance 
estimates is added to the variance between estimates. 
Essentially, the variance of an estimator is broken into 
two parts using the common formula given I the 
imputation process and S the sampling process giving 

V(A) = Var I (E [A/S]) + E I [Var (A/S)] (2) 

and the two portions are estimated using the survey data 
and the multiple imputations of the data set. For 
certain types of imputations it is shown that the sum of 

sample estimates of these values provides consistent 
estimates of the actual variances (Rubin, 1987). 

However, there are two potential problems with the 
multiple imputation process: 
a. It is more difficult and expensive. It requires 
several imputations be made which can be expensive on 
a large scale data set, such as, those produced in many 
government surveys. It can be more complex than use 
of simpler common techniques, such as, sequential hot 
decking (Cox, 1980). In recent examples for the 
National Health and Nutrition Survey (NHANES) 
produced by Schafer, Khare and Ezzati-Rice, 1993, the 
multiple imputation process required production of 
variables with inverse Wishart distributions. 
b. It is not consistent for hot decking (Rubin, 1987, p 
122) one of the most common methods of imputation 
used for large surveys. 

Possibly because of these limitations and the 
general need to address this significant problem, in 
recent years other approaches have been suggested. 
Among them are Burns, 1990, Rao and Shao, 1992, 
Shao, 1993, Sarndal, 1992, Rao 1993 and Tollefson 
and Fuller, 1992. Most of these estimators rely on a 
reversal of formula (2), that is, 

V(A) = Var, (E [A/1]) + E, [Var (A/1)] (3) 

The methods of, Rao and Shao, 1992 and Shao, 
1993 depend on replication methods, the first 
jackknifing and the second balanced repeated replication 
(BRR) and are similar. Further, both are for hot 
decked data. Both rely on adjustments to imputed data 
during replication. A third paper by Rao, 1993, again 
uses jackknifing and adjustments but extends the 
method to other types of imputation beyond hot 
decking. 

This paper is intended to produce and analyze 
results of the application of the replication methods to 
data from the second National Medical Expenditure 
Survey (NMES2) conducted in 1987 (Cohen, 
DiGaetano, and Waksberg, 1991). This survey 
required imputation of expenditures for many types of 
medical expenditures and had a large percentage of 
imputation, typically between 25% and 40%. (For 
example, see Hahn and Lefkowitz, 1992). Imputation 
was done using sequential hot deck methods(Cox, 1980). 
Because of this large amount of imputation in NMES 
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and other government surveys we felt the potential 
underestimation of variances was an important research 
issue. The more recent methods of Rao and Shao were 
chosen because they appeared simpler and less 
expensive. 

Particular Problem 

Currently, variances for NMES data are calculated 
using Taylor Series (Cohen, DiGaetano, and Waksburg, 
1991) This is the simplest method for AHCPR to 
handle variances. It only requires a single imputation 
and a single set of weights. Multiple imputation would 
require more complex imputation. Use of replicate 
methods, requires replicate weights which are available, 
but not on NMES Public Use Files and calculation of 
replicate estimates. The new replicate methods also 
require means to make adjustments to imputed data for 
each replicate. Because of numerous imputation sets 
and numerous cells used for imputation within each data 
set, setting up the data sets to perform these new 
replication methods is a somewhat complex process, 
not at all the simple process implied by Rao and Shao, 
1991, who only consider one imputation cell and thus 
only require knowledge of which points are imputed, 
which is currently available on NMES PUF's (AHCPR, 
1992). Because of these complexities, AHCPR has 
begun this preliminary study to provide information to 
help guide its long term variance estimation strategies 
for NMES. 

To start this process, variances for total 
expenditures for the entire population and several 
subpopulations were produee~ using standard BRR a n d  
Taylor Series, which do not consider imputation and the 
new adjusted BRR method which considers imputation. 
This was done for two types of expenditures: 
a. Inpatient hospital stays (STAZ) and 
b. Physician office visits (MVIS). 

These were chosen because of the differences in 
imputation rates, types and consistency of expenditures 
and percent of the population with such expenditures. 

For STAZ there are approximately 36% of the 
weighted population of events imputeA while about 16 % 
of the population have such an expenditure. For MVIS 
approximately 28 % of the visits are imputed and about 
70% have such an expenditure. Even with the smaller 
percent imputed from MVIS, formula (1) would 
indicate a potential underestimate of 40% for NMES 
variances. 

Imputation for NMES is at the event level (hospital 
stay, office visit) where weighted sequential hot decking 
is done for a number of imputation cells. Cells were 
defined by combining variables related to response and 
those which proved to be of importance in prediction 

models(See AHCPR, PUF's 14.4 and 14.5, 1992). 
Letting ~/~ be the value of the jth imputed event in 

the ith imputation cell and y~ be the value of jth donor 
event in the ith imputation cell and w~ the weight for 
the ijth event in the rth replicate, then the adjusted 
expenditure estimate for the rth replicate(There are 76 
replicates for NMES.) 

= U, U,w  y o + 
t j~  

% + ( E , ,  - Eo , ) ]  <4) 
I jeR i 

~ w , v  " Yo 
where E~ = y~Dt 

j~t 

r = 0, 1, 2, . . .  .... 76 (5) 

where D~ is the ith donor cell, 
is the ith recipient cell, 

r is the replicate number, with replicate 0 the full 
sample. 

This formula can be obtained by applying 
techniques similar to those used in Rao and Shao (1992, 
p. 817) to half samples. The estimate for the variance 
of the total expenditures, assuming uniform response 
mechanisms, is 

2 
76 ( Y a r - a )  (6) 

Va = E 7 6  
r-1 

The unadjusted estimator for replicate r can be written 
8.8 

t jd), l j ~  

and the unadjusted estimate for variance is 

v - E  
r=l 76 

(8) 

401 



Results 

Using formulas (4), (6), (7) and (8) we calculated 
variance estimates for the two populations for several 
representative subpopulations. Typical sets of results 
are shown in Tables A and B. These Tables show 
results of estimates using Taylor Series for totals 
produced using SESUDAAN(Shah, 1981), standard 
BRR and the newer adjusted BRR technique. 

TABLE A 
Variance for STAZ 

Group 

All 

Males 

Males 65 + 

White Males 65 + 

Other Males 65 + 

18-45 

Whites 18-45 

Other 18-45 
i 

SESUDAAN 
Var/1017 

352.9 

173.1 

48.75 

37.45 

9.658 

28.21 

19.72 

8.201 

BRR 
Var/lO 17 

277.8 

170.9 

39.09 

29.19 

9.002 

23.70 

16.85 

7.505 

ABR 
Var/1017 

303.7 

181.8 

39.26 

29.32 

8.955 

27.33 

18.81 

7.598 

TABLE B 
Variances for MVIS 

ABRR 
SESUDAAN 

.861 

1.050 

.805 

.783 

.927 

.969 

.954 

.926 

ABRR 
BRR 

1.093 

1.064 

1.004 

1.004 

.995 

1.153 

1.116 

1.012 

Group 

All 

Males 

Males 65 + 

White Males 65 + 

Other Males 65 + 

18-45 

Whites 18-45 

Other 18-45 

SESUDAAN 
Var/10 t5 

610.1 

260.8 

50.54 

48.24 

3.951 

115.1 

105.6 

28.21 

BRR 
Var/10 ~5 

475.7 

204.6 

36.48 

34.45 

4.623 

155.9 

86.53 

59.08 

As can be seen from the tables, the differences 
between the adjusted and unadjusted BRR estimators of 
variance are surprisingly small given the levels of 

ABRR 
Var/1015 

535.5 

219.7 

36.39 

34.45 

4.626 

167.3 

93.06 

59.87 

ABRR 
SESUDAAN 

.878 

.842 

.720 

.714 

1.171 

1.454 

.881 

2.122 

ABRR 
BRR 

1.126 

1.073 

.998 

1.0(~ 

1.001 

1.073 

1.075 

1.013 

imputation and the implied increase in variances from 
equation (1). The Taylor Series estimates are generally 
higher, but as is demonstrated in Table B, sometimes 
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they were smaller. The average differences in the two 
BRR variance estimates for the 54 population sets, 
defined by sex, race and age, was about 2% for the 
STAZ and 4% for the MVIS. Although our increases 
in variance estimates for adjusted BRR versus BRR 
estimates were less than those of Schaefer, Khare and 
Ezzati-Rice, 1991, they also had a smaller than 
expected increase. They related their smaller than 
expected increase to the fact that the amount of missing 
information was less than the percent imputed. By 
examining the differences between the two BRR 
estimators, one can see that a combination of the 
structure of the BRR formulas and the use of extra 
information about the imputed cases seems to play key 
roles in the results obtained in this analysis. 

By manipulating the estimate in equations (4) and (7) 
one can show 

t jeR, 

E E  w (E. - 
t je/~, 

and 

r. ,-  r, ÷ E E  n,<En -e0) 
i j~R~ 

(10) 

This shows the adjusted and unadjusted BRR estimates 
differ only by a sum of differences of averages for the 
replicates and full sample of the imputation cell means. 
Since the imputation cells are selected to cut variance 
by creating cells with similar expenditures, if one has 
used this information wisely to cut large amounts of 
between cell variance, the differences in the two 
estimates likely are very small. 

Considering the estimate of variance using the adjusted 
BRR in equation (6) and that the expected value of the 
second term in equation (10) is zero, we can treat V, 
like the variance of a sum, ie, as the sum of the two 
variances plus twice the covariance, thus 

76 

Y) 
r = l  

76 
76 2 

r = l  i je /~ _ , 

76 
(11) 

1 

V a = V + 2~ 'orr(Yr ,  Sr ) 'V2"o  8 + o~ where 

E E  
i ieR t 

- e0,).  

The result is similar to the variance of a sum given the 
sample. 

For the most part for our data 

2 
o 8 ~ .OI'V, Corr (Y , ,8 )  - - .1  
thus V. < 1.03.V. 

Thus because the variance of the difference in the 
equations (9) and (10) is small due to our selections of 
cells and because this difference and the unadjusted 
estimates show little correlation, the two BRR 
estimators only differ by a small amount. 

If one returns again to equation (9) one can break 
the equation into two parts in a manner similar to Shao, 
1993. The first of the three parts is the values from 
respondent units from the replicate reweighted to 
represent the entire sample. This is the expected value 
of the estimator given the sample. The second terms 
represent differences between imputed values and their 
expected values given the sample. When put into the 
formula for V, the first part contributes the estimate of 
the first term of equation (3), the second contributes the 
estimate of the fight part of equation (3). 

Calculations of both parts were made to determine 
what part of the entire variance were contributed by 
imputation, since if we had simply reweighted the 
respondents the variance of the first part of equation (9) 
would be the estimate of variance. The average percent 
of the variance from the second term in equation (3) 
was 6 % for the STAZ and 11% for the MVIS. It was 
expecteA that both would contribute relatively small 
parts to the variance and that the STAZ values would 
be less since this data set showed the smallest increase 
of the adjusted over unadjusted BRR's. This seems to 
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indicate a more precise imputation process for STAZ. 
This small contribution along with the previous small 
differences between the two BRR estimates, seems to 
indicate that a good choice of imputation cells for the 
hot deck process can minimize the effects of imputation 
on variances. 

As was noted earlier, the Taylor Series estimates 
were generally higher than either of the BRR estimates. 
Such differences are difficult to explain. However, the 
structure of the Taylor Series estimate.s is very different 
from that of the BRR estimates. Everything is done on 
a strata level. This fact could explain some of the 
difference. Imputation is done across all strata and was 
done without replacement. Thus, one might expect the 
second term in equation (2) to have a finite correction 
factor. Since weights are about equal for each 
respondent, a 40% nonresponse rate indicates that 
67%(40%/60%) of the respondents data is used in 
imputation. This means that the effects of imputation 
on a variance of a total may be small. However, within 
a stratum, since there is no knowledge of the overall 
control total, the effects might be transparent because 
only a small part of the results of imputation are 
reflected within the individual stratum. Thus Taylor 
Series misses this variance reduction. A further 
possible reason that the Taylor Series estimate tend to 
be higher is that such estimates for NMES do not 
consider the effects of post stratification and the Taylor 
Series estimates tend to be less stable for smaller 
sample sizes. 

Maior Results and Recommendatio~ 

Variances for two populations for a variety of 
demographic cells have been estimatexl for data sets 
which were imputed using hot deck imputation. 
Variance estimates were made using standard BRR, a 
new type of adjusted BRR estimator and Taylor Series 
methods. In general the two BRR estimators produced 
very similar results with the adjusted estimator being 
slightly higher on the average. These differences were 
much smaller than.predicted considering the percent of 
the data set imputed. The Taylor Series estimates for 
the most part were significantly higher than either of the 
BRR estimates for the same estimate. 

It was shown that the two BRR estimates differ by 
a very small term which relates to the size of the 
variation within the imputation cells used. This seems 
to indicate that the percent of truly missing information 
can be substantially reduced if variance between 
imputation cells is a substantial portion of variance. 

A number of explanations were proposed for the 
differences between the BRR and Taylor Series 
estimates. Loss of information on the imputation 

process performed across strata, lack of consideration 
of post stratification and instability of the were 
proposed as possible reasons for these differences. 

This study is only a small step towards 
understanding the relationships between variance 
estimates when percent imputation is significant. 
Among some of the studies that are needed are: 

a tests of BRR on other hot decked data sets, for 
NMES, this means estimates for other expenditures, 
such as, non physician expenditures and prescription 
drugs. 

b applications to simulated populations in order to 
compare adjusted and unadjusted variance estimates 
with 'true' variances, and 

c efforts to extend the techniques to other estimators, 
such as, ratios and 

d further comparisons of unadjusted BRR, Jackknife 
and Taylor Series estimates against adjusted estimates 
to determine if one type of naive estimator is potentially 
more robust than others. 
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