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1 P r o b l e m  and nota t ion  

Sampling for nonresponse followup (NRFU) has 
been proposed as an innovation for census method- 
ology in year 2000. The potential cost savings for 
NRFU sampling are large, but it is necessary to 
show that  we can at tain an acceptable level of accu- 
racy for small areas before such a sampling scheme 
can be adopted. Furthermore, there are good rea- 
sons for requiring the NRFU sample to be a sample 
of blocks rather than individual households, having 
to do with the interaction of NRFU sampling with 
coverage measurement and the exigencies of field 
management  of NRFU. 

The following is a brief description of the data 
collection under NRFU sampling. At the first stage, 
census data  are collected by mailout-mailback (pos- 
sibly in combination with other methodologies such 
as a truncated field/telephone followup operation) 
in an area (say, a District Office). At the second 
stage, followup (field or telephone) is carried out 
for a sample of the nonresponse cases from the first 
stage. The sample consists of all nonresponding ad- 
dresses in a sample of the blocks in the area. Second 
stage followup is assumed to be complete in the sam- 
ple blocks, meaning that  all addresses either are re- 
solved to be vacant or by are resolved by completing 
a questionnaire for the household that  lives there. 

The problem is to es t imate / impute  the charac- 
teristics of households at addresses in nonsample 
blocks from which no response was obtained at the 
first stage; one possible household type is "vacant," 
meaning that  no household resided at that  address. 
(Many "vacant" households may have already been 
detected through mail return of the original ques- 
tionnaire.) 

We assume the following notation: 
i = block index, 

a - a ( i )  = ARA index corresponding to 
block i, where the ARA is an 
area intermediate in size be- 
tween a block and the entire 
area under consideration (DO), 

j = index of household type, 

x t -  x l ( j )  - set of covariate values associ- 
ated with household type j ,  

x2, x3, x4 - other sets of covariate values as- 
sociated with household type j ,  
where x2 and x3 are each as- 
sumed to be coarser than (ex- 
pressible as linear functions of) 
x l, and x4 is assumed to be 
coarser than x2 and x3, 

r - first-stage response indicator, 
r = 0 for responding households 
and r = 1 for nonrespondents. 

The covariates xt,  • • • x4 may be multivariate. As 
a special case, xl could be a vector of indicators for 
membership in each of several classes of households; 
then the covariate is equivalent to classification of 
the households into classes. The covariate vectors 
could also include quantities such as the number of 
members, number of Black members, or number of 
Black members of age 18+, for which average values 
would be meaningful. 

The ARA could be replaced by any area inter- 
mediate between the DO and the block. Instead of 
using the ARA as usually defined, areas could be 
defined by a combination of geographical contiguity 
(the ARA) and stratification by block-level covari- 
ates (such as percent minority),  in order to obtain 
more homogeneous areas whose differences could be 
described by modeling. 

2 A mode l  and its interpretation 

We will calculate our imputat ions by assuming a 
loglinear model for the following form: 

l o g E n ( i , j ,  r )  ~ i + x l  + r + i . x 2 + i . r + r . x a + r . a . x 4  

where the left hand side is the logarithm of the ex- 
pected count for a given block, household type and 
response status, and the right hand side represents 
a linear predictor determined by the covariate val- 
ues, the response indicator r, and the indices i and 
a = a ( i ) .  

The interpretations of the terms of the model are 
stated below. Note that  each effect corresponds to 
a margin of the block × type × response table. 
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i Main effect for block, corresponding to 
the margin for number of households 
per block (block size); 

xl Main effect for household covariates, 
corresponding to number of house- 
holds for each type or mean value of 
each covariate included in x l; 

r Main effect for response, correspond- 
ing to overall level of response across 
the DO; 

i .  z2 Interaction of block and household co- 
variates, corresponding to number of 
households by type or mean covariate 
levels, within each block; 

i . r  Interaction between block and re- 
sponse, corresponding to overall level 
of response within each block; 

r • x3 Interaction between response and 
household covariates, representing the 
association between household level 
covariates and the propensity of house- 
holds of different types to respond; 

r . a . x 4  Interaction of response, ARA and 
household covariates, representing the 
ARA-specific aspect of the interaction 
of response and covariates. 

In order to understand the motivation for this 
model, this list of terms and corresponding mar- 
gins or averages should be considered in light of 
the following principle of maximum likelihood es- 
t imation in loglinear models" In a hierarchical log- 
linear model (i.e. one in which for every interac- 
tion effect, all main effects or interactions marginal 
to it are also included in the model), the expected 
(fitted, predicted) values for every margin or mean 
corresponding to an effect in the model are equal 
to the corresponding observed margins or means. 
This implies that  if we fit the models by maximum 
likelihood, the (1) fitted block counts, (2) response 
rates by block, (3) covariate means overall (for xl 
covariates) and (4) by block (for x2 covariates), and 
(5) covariate means for nonrespondents overall (for 
x3 covariates) and (6) for nonrespondents by ARA 
(for x4 covariates) will match those in the observed 
data. Thus, this model generalizes the model used 
by Isaki of block x type  independence, yielding unbi- 
asedness at smaller levels of aggregation, assuming 
that  the margins and averages are estimated unbi- 
asedly from the data. 

We have not yet defined the sets of covariates 
x 1 , . . . x4  to be included in the model. Because x4 
interacts with the smallest level of aggregation for 
the nonrespondent data, it should include those co- 
variates which it is most important  to impute accu- 

rately at the ARA level (and almost as accurately 
at the block level). These would include numbers 
of household members by Voting Rights Act cat- 
egory, as well as the indicator for vacant address. 
("Vacant" may be considered a household type, for 
these purposes.) The covariate vectors x2 and x3 
must include all the components of x4, at a min- 
imum, but may also include other covariates. Fi- 
nally, X l may be very detailed, including indicators 
for all observed household types. An interpretation 
of the way the model treats the different sets of co- 
variates is that  we estimate the detailed distribu- 
tion of household types across the whole area (Xl) 
and then shift that  distribution to allow for the gen- 
eral characteristics of the block (z2), the general 
differences between responding and nonresponding 
households (x3), and the most important  differences 
between responding and nonresponding households 
in the particular ARA (x4). 

The model described above can be modified to 
bring in more or less local detail. For example, we 
could replace the ARA by a smaller unit, such as a 
cluster of contiguous blocks containing a single sam- 
ple block. Or we could leave the ARA in the model, 
but include the interaction of a lower-dimensional 
covariate x5 with the block cluster as just described. 
Also, see the comments on the choice of "ARA" def- 
initions at the end of the last section. We could 
simplify the model by omitting interactions, either 
i . x 2  or r . x 3  or r , a ,  x4. 

The idea of modeling household characteristics 
using low-dimensional covariates at the block level 
and in more detail at more aggregated levels is simi- 
lar in concept, although not in details, to the model 
described in Zaslavsky (1992, section 5). 

3 Fitting the models and calculating 
imputations 

The model described previously may be formulated 
in several ways; for each formulation, there is a nat- 
ural approach to fitting the model. A possible com- 
plication in fitting the model is that  our data do 
not form a complete blockx responsex type table, 
because we have information on responding house- 
holds in all blocks but for nonresponding households 
only in the sample blocks. 

The most direct approach to fitting the model is 
through Poisson regression. The properties of log- 
linear models that  we rely on hold equally well under 
Poisson and multinomial sampling. The incomplete- 
ness of the data present no problem, as the Poisson 
regression model can be fitted to counts in all avail- 
able cells. 

A second approach is to fit a multinomial logistic 
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regression model. The cell for this model is defined 
by block x response (i.e. block and first stage re- 
sponse status are the predictors), and the outcome is 
household type. Again, the unobserved cells pose no 
problem because they simply can be omitted from 
the regression data. An advantage of this approach 
is that the number of parameters is smaller because 
the model describes the distribution of household 
types in each cell but does not describe the marginal 
distribution of cell counts and response status by 
cell. The logistic regression model is of the form 

log P ( j  I i, r )  ... x l  + i • x2  + r • x3  + r • a • x4  

and the parameters corresponding to the effects i, r 
and i . r  do not appear in the model. A disadvantage 
of this approach is that standard multinomial logis- 
tic regression software may be less readily available. 

A third approach is to apply the EM algorithm to 
complete the missing cells and then to fit a loglinear 
model to the complete table. This approach may be 
impractical if there are scaled covariates (i.e. if any 
x is not simply a categorization of household types), 
because standard loglinear modeling software usu- 
ally does not handle scaled covariates. 

With any of these model formulations, it is pos- 
sible that with any particular data set, some pa- 
rameters may be inestimable because the maximum 
likelihood estimates lie on the boundary of the pa- 
rameter space (are infinite) or because there is no 
information for the parameter. Inestimable param- 
eters may be removed by reducing the model, but 
in a production setting it would be unrealistic to 
attempt to tailor the model specification to each 
DO (although there might be several versions of the 
model to use in different areas). 

If a small amount of prior information is intro- 
duced, estimability of all parameters can be guar- 
anteed without the requirement of judgemental in- 
tervention in the fitting of each model. A simple 
prior specification would be given by a prior distri- 
bution on all parameters that is normal with mean 
0 and a covariance matrix that is diagonal (signi- 
fying prior independence) with large variances for 
all parameters. As long as the variances are large, 
little bias will be introduced but infinite or ines- 
timable parameters will be pulled toward 0. Note 
that this prior information may be incorporated by 
adding a small amount (the inverse of the prior vari- 
ances) to the diagonal elements of the information 
matrix required in the Newton-Raphson algorithms 
used for fitting these models. A similar procedure 
for estimation with sparse data was applied by Be- 
lin, Diffendal, Mack, Rubin, Schafer, and Zaslavsky 
(1993). In their application, however, the prior was 

estimated from the data, while here we concentrate 
on minimizing bias by keeping the amount of prior 
information small, even though mean squared error 
at the block level may not be reduced as much as 
would be possible with more aggressive smoothing. 
(An alternative approach to incorporating prior in- 
formation is to append a small amount of "pseudo- 
data" to the data set, but given the complexity of 
the model and the large number of cells, this ap- 
proach may be less convenient in this setting.) 

Whatever method is used to estimate model pa- 
rameters, the next step is to calculate probabil- 
ities for each household type in the nonresponse 
cell for each nonsample block. These probabilities 
are predicted directly from the multinomial logis- 
tic regression model. The Poisson regression model 
predicts counts for these cells (up to a propor- 
tionality constant determined by the unestimated 
block x response effect for that cell), which can be 
turned into predicted proportions. Similarly, pre- 
dicted cell counts from the loglinear model may 
be turned into predicted proportions. The esti- 
mated counts for each block and household type 
are then calculated by multiplying predicted pro- 
portions by the number of nonresponding addresses 
in each block. Note that the margins by block are 
integers, but the margins by household type are gen- 
erally not integers. 

Finally, some rounding or imputation procedure 
must be applied to create a simulated roster. As- 
suming that an unbiased procedure is used, the 
choice of rounding procedure affects the variance 
of the results but not the bias. By an unbiased 
procedure we mean a stochastic procedure that in 
expectation imputes the predicted number of units 
in each cell. The simplest unbiased procedure is 
simply to impute households independently, one by 
one, according to the predicted probabilities in each 
block. Variance can be reduced by attempting to 
control the number of households by class, or other 
aggregates such as the total number of Blacks aged 
18+, to be close to the predicted number. Unbi- 
ased schemes for "controlled rounding", i.e. round- 
ing in a two-way table while preserving marginal 
totals, were developed by Cox (1987) and George 
and Penny (1987). 

4 T h e  s t r u c t u r e  o f  t h e  s i m u l a t i o n s  

The primary objectives of the study are to evalu- 
ate the bias, variance and MSE of the estimates of 
demographic aggregates (such as number of persons 
by race and age), using imputed household com- 
positions for nonresponding addresses in nonsample 
blocks, at the block, ARA and DO levels. We want 
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to know whether we can at ta in acceptable levels of 
error under various sampling schemes and rates, and 
to try to determine the best models and sampling 
schemes. 

Answering these questions analytically is not 
likely to be feasible, given the complexity of the 
models and sampling scheme and the number of 
variations of the models that  will be examined. In- 
stead, we approach this problem through simula- 
tions. The simulations are similar in structure to 
those described by Schindler (1993). The steps of 
the simulation are as follows: 

1. Blocks are sampled according to the selected 
sampling scheme and rate. 

2. A model is fitted as described above. 

3. Predicted counts are calculated for each block; 
the aggregates of interest in the evaluation are 
calculated based on the predicted counts. 

4. Counts are rounded, if this is part  of the 
methodology, and households are imputed, for 
each block; the aggregates of interest in the 
evaluation are recalculated based on the impu- 
tations or rounded counts. 

Steps 1 through 4 are repeated enough times to 
yield adequate estimates of bias, variance, and mean 
squared error. Errors are estimated for aggregates 
at both steps 3 and 4. The purpose of calculating 
error at both steps is to estimate the contribution 
of rounding and imputat ion to error; if error is at 
acceptable levels at step 3 but is much larger at 
step 4, it would make sense to retain or even simplify 
the prediction model and concentrate on improving 
the imputat ion procedures. 

There are at least two simulation parameters 
whose effect we would like to investigate. These are 
the NRFU sampling rate (fraction of blocks sam- 
pled) and the truncation point for nonsample data  
collection (i.e. limited to mailback, or including 
some fraction of NRFU cases; a June 2 cutoff date, 
with sampling thereafter, would be interesting to 
look at). There may be other design features that  
could be investigated. It would probably be worth- 
while to run the simulations at several levels of these 
factors, at least in a few DOs. 

5 Preliminary Simulation Results 
As a preliminary approach to our simulations, we 
restricted ourselves to steps 1-3 of the simulation 
procedure described in the previous section. This 
allowed us to evaluate the performance of the pre- 
diction model without the added contribution to er- 

rot by the rounding and imputat ion.  We plan to in- 
vestigate rounding and imputat ion procedures after 
we have shown that  the prediction model performs 
well. 

Following Isaki, Tsay and Fuller (1994) we clas- 
sifted households into 19 types where 18 of these 
types are defined by the cross-classification of house- 
holds by three size categories, three race categories, 
and two tenure categories. The three size categories 
are one to two people, three to four people, and 
five or more people. The three race categories are 
non-Hispanic Black, Hispanic, and Other. The two 
tenure categories are owner and renter. The 19th 
type is for vacant households. 

We used short-form data  from the 1990 Census 
for one District Office (DO). This DO consisted of 
4907 blocks with a total  of 112,966 households. Of 
these households 14.38% were non-Hispanic Black, 
6.13% were Hispanic, 73.50% were Other, 30.20% 
were renters, 5.99% were vacant and 72.60% were 
respondents. The race of a household was deter- 
mined by the most prevalent race in the household. 
(Only 2.29% of the households had more than one 
race present in the household). This data  did not 
contain ARA information so we divided the blocks 
into 10 pseudo-ARAs of approximately 491 blocks 
each, based on block identification numbers. This 
seemed like a reasonable procedure because blocks 
close in identification numbers are also geographi- 
cally close. 

To simulate a NRFU sampling procedure with a 
sampling rate of 30°£, we drew 15 samples of 1472 
blocks each, using simple random sampling with- 
out replacement from the total  number of blocks 
in the DO. For each sample, the model was fit us- 
ing the information from all the mailback respon- 
dents and from the mailback nonrespondents in the 
NRFU sample. We fit one specific version of the 
model with household type as the x l variable, the 
cross-classification of race by tenure (plus the vacant 
category) as the ~2 variable, the cross-classification 
of race by size (plus the vacant category) as the x3 
variable, and tenure as the x4 variable. To fit this 
model, we used a combination of Iterative Propor- 
tional Fit t ing and the EM algorithm (i.e. the third 
method of Section 3). 

To evaluate the estimates for the nonsample non- 
respondents we used two loss functions. As a mea- 
sure of the bias for the estimates of the number of 
households of type j in a geographic unit (e.g. block, 
ARA, DO) we calculated the Root Mean Weighted 
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Squared Bias which is given by 

where 

and 

V ~~+ 

m 

1 ~"~s=l (Y i j8  -- Y i j )  2 

and ]~j is the true number of households of type j in 

geographical unit i, ~ j s  is the estimated number of 
households of type j in geographical unit i using the 
model fit from sample s, Y/+ is the total number of 
households in geogr___aphical unit i, S is the number 

^ 

of samples drawn, Y i.i is an average over the S sam- 
ples, and i -  1 , . . . ,  N where N is the total number 
of geographical units in the DO. Specifically, ~ j ,  
is calculated as the observed number of households 
of type j in area / plus the estimated number of 
nonsample nonrespondent households of type j in 
area i as predicted by the model fit using sample s. 

^ 

For example, ~ j ,  could be the observed plus esti- 
mated number of households of type 3 in block i or 
it could be the observed plus estimated number of 
rental households in ARA i. As a measure of the 
mean square error, we calculated the Root Mean 
Weighted Squared Root Mean Squared Error which 
is given by 

/ 

V 

where 

E i j  - -  -~ ,= i  Y/+ 

where ]~j, Y/j,, ~ + ,  i, and S are defined as above. 
These loss functions were specifically chosen so 

that  measures of error can be calculated at various 
levels of geography. This reflects the fact that  block 
level estimates are often aggregated to form esti- 
mates at higher levels of geography. Therefore, it 
is important  to be able to measure error not only 
at the block level, but also at these higher levels of 
geography. With this in mind, these measures were 
also chosen because they weight errors by the size 
of the geographical unit. This leads to consistent 
estimates of error when aggregating over geograph- 
ical units. For example, when blocks are weighted 
by size, two blocks with 5% error will contribute the 
same amount to the measure of error regardless of 

whether the blocks are left separate or aggregated 
into one large block. This is not the case if blocks 
are not weighted by size. 

Some results of the simulation are shown in Ta- 
bles 1 and 2. In both of these tables, the columns 
indicate the type of household that  was estimated. 
The rows indicate the bias and root mean square er- 
ror measures, as defined above, at various levels of 
aggregation (block, ARA, DO). The last row of each 
table lists the prevalance of that  particular type in 
the DO. All entries in the tables are percentages. 

Both tables show that  the model predicts the 
missing data very well. They show small errors at 
the block level and very small errors at the ARA 
and DO levels. In fact, in most cases the errors are 
smaller than 1%, which is a smaller amount of error 
than we would expect to get as a result of under- 
count. 

The results for predicting the number of house- 
holds of types 1-9 are shown in Table 1. The results 
for types 10-19 were similar. To briefly summarize 
the results for all 19 types (not all shown in Ta- 
ble 1), when predicting the number of households 
at the block level, the biases ranged from 0.40% to 
2.71% with an average of 0.89% and the root mean 
squared errors ranged from 0.64% to 5.12% with 
an average of 1.48%. At the ARA level, the bi- 
ases ranged from 0.01% to 1.05% with an average 
of 0.13% and the root mean squared errors ranged 
from 0.02% to 1.76% with an average of 0.24%. 
At the DO level, the biases ranged from 0.00% to 
0.87% with an average of 0.09% and the root mean 
squared errors ranged from 0.01% to 1.39% with an 
average of 0.15%. Results for predicting the num- 
ber of households of a particular race or tenure are 
shown in Table 3. In this table, biases at the block 
level ranged from 1.27% to 2.71% with an aver- 
age of 2.11% and root mean squared errors ranged 
from 2.25% to 5.12% with an average of 3.83%. Bi- 
ases at the ARA level ranged from 0.19% to 1.05% 
with an average of 0.54% and root mean squared 
errors ranged from 0.33% to 1.76% with an aver- 
age of 0.94%. At the DO level the biases ranged 
from 0.10% to 0.87% with an average of 0.43% and 
the root mean squared errors ranged from 0.18% to 
1.39% with an average of 0.70%. 

These tables show that  the relative error decreases 
as we aggregate over larger levels of geography. This 
is a characteristic of the model because the model 
includes more information about the households at 
higher levels of geography. These tables also show 
that  the contribution to error due to bias and due to 
variance are of approximately the same magnitude 
at all levels of aggregation. 
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Block Bias 
Block RMSE 

ARA Bias 
ARA RMSE 

DO Bias 
DO RMSE 
Prevalence 

Type1  Type2  Type3  T y p e 4  T y p e 5  Type6  Type7  Type8  Type9  
0.40 0.53 0.77 1.11 1.41 1.65 0.44 0.62 0.79 
0.64 0.89 1.28 1.88 2.30 2.83 0.72 1.04 1.31 
0.01 0.07 0.05 0.30 0.09 0.17 0.03 0.05 0.12 
0.02 0.13 0.09 0.49 0.19 0.36 0.05 0.10 0.21 
0.00 0.02 0.02 0.14 0.03 0.12 0.01 0.02 0.06 
0.01 0.04 0.04 0.23 0.09 0.22 0.02 0.05 0.10 
0.75 1.21 3.01 3.95 27.12 14.38 0.94 1.35 2.50 

Table 1: Household Types 1-9 

Black Hispanic Other Owner Renter Vacant 
Block Bias 1.87 1.27 2.09 2.04 2.68 2.71 ...... 

Block RMSE 
ARA Bias 

ARA RMSE 
DO Bias 

DO RMSE 
Prevalence 

3.36 2.25 3.81 3.61 4.80 5.12 
0.57 0.19 0.39 0.40 0.65 1.05 
0.92 0.33 0.75 0.69 1.17 1.76 
0.35 0.10 0.40 0.33 0.54 0.87 
0.57 0.18 0.65 0.52 0.87 1.39 

14.38 6.13 73.50 63.80 30.20 5.99 

Table 2: Race and Tenure 

6 F u t u r e  W o r k  

We plan to continue investigating this procedure by 
evaluating the specific model described in the previ- 
ous section with many more samples. We also plan 
to evaluate other versions of the model as well as the 
effect of different sampling rates and different types 
of households classifications. We also plan to ex- 
amine the use of Empirical Bayes Smoothing across 
local areas. This would indicate how much "borrow- 
ing strength" from neighboring blocks can improve 
our estimations. Finally, we also plan to look at the 
rounding and imputation stages of the procedure. 
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