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1. INTRODUCTION 

The inequality of the distribution of income and the 
polarization of the population are topics of increased 
interest to society. There exists a large number of 
different measures for quantifying income inequality 
and most of their properties have been thoroughly 
investigated. However, estimation of the variances of 
such measures has remained elusive for years. 
Seldom has there been any attempt to provide infor- 
mation about the sampling variability associated with 
these measures. Such information is of particular 
interest when income distributions are compared from 
region to region or across time. Lack of this informa' 
tion confmes the role of these measures to that of 
descriptive devices rather than tools for formal statisti- 
cal inference. 

This paper presents two of these measures, the 
celebrated Lorenz Curve Ordinates (LCO) and the 
quantile shares, (QS) also known as income shares. 
These measures are nonlinear functions of population 
values and are estimated by complex statistics whose 
variances are not expressible by simple formulae nor 
can they be estimated by traditional variance estima- 
tion techniques. We have to rely on approximate 
variance estimation techniques. The major problem 
with these statistics is that they depend on quantiles. 
Therefore, their variances should account for two 
sources of uncertainty: variability of the quantile and 
variability of the statistic itself assuming that the 
quantile is f'Lxed. 

In a simulation study based on the Canadian 
Survey of Consumer Finance (SCF) we investigate 
empirically the performance of different resampling 
methods and the estimating equations approach for 
variance estimation. 

Section 2 contains definitions of LCO and QS and 
their complex sample estimators. In section 3 we 
present three resampling methods: the delete-one- 
PSU jackknife, the repeatedly grouped balanced haft- 
sample method and the hierarchical Monte-Carlo 

method. Also, we include the estimating equation 
method. The simulation study is described in detail in 
Section 4. Our f'mdings are summarized in Section 5. 

2. LORENZ CURVE ORDINATES AND 
QUANTILE SHARES 

We will assume a stratified multistage design with a 
large number of strata, L, and few primary sampling 
units (PSU's), n h (~2), sampled from each stratum. 

Let w~  be the weight attached to the i-th ultimate 
unit (a household in the SCF) in the c-th PSU of the 
h-th stratum such that the size of the population is 

estimated as N = ~ ,  w~i. We use ~ ,  = ~ h  ~ c  ~ i  
to denote summation over all ultimate units in the 
sample incorporating all stages of sampling. 

Although the PSU's are usually sampled without 
replacement, at the variance estimation stage we will 
treat the PSU's as if they were sampled with replace- 
ment. This will lead to a conservative estimate with 
a small relative bias whenever the first stage sampling 
fraction is small. 

The distribution of income within the population 
can be depicted by observing the share of income 

received by the poorest P-lOOp percent of the 
population, 0 gp g 1. The Lorenz Curve is a graphical 
representation of that quantity as a function of p and 
is estimated as 

~_,~, W hci Yha 

where ~p = inf{Yh,:i: P(Y~i) ~P } is the ptn sample 

quantile and/~(y) = ~ s  whc,l {Yhc, < Y}/1V is the fmite 
population distribution function estimator. 

While L(p) is the income share attributed to the 
poorest P percent of the population, the quantile 
(income) share is defined as the percentage of total 
income shared by the population allocated to any 
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quantile interval ({t'l' {t,2 ]" The QS is estimated by 

O ~ l , t ' : )  = 
T'pz T'pl 

~ =  w ~ y ~  "~ 

Note that the quantile interval membership is not 
known beforehand for the population units. However, 
the size of the interval, expressed in terms of the 
number of population units in it, is known. For 
example, the decile interval contains 0.1 N units. 
Therefore a quantile interval can be seen as a post- 
stratum that cuts across the PSU's and strata. On the 
other hand, the boundaries of the interval are sample 
dependent and are known conditionally on the real- 
ized sample. 

3. VARIANCE ESTIMATION 

Pioneering work on estimating the variance of these 
measures has been done by Beach and Davidson 
(1983). They proposed a transformation of the 
weighted observations, tacitly assuming the indepen- 
dence of the observations. Their solution can be seen 
as an approximation in the complex design situation. 

In this section, we will briefly review the variance 
estimation methods used in our simulation study. 

3.1 Delete-one-PSU Jackknifing 

The jackknife variance estimator is inconsistent for 
quantiles (Miller, 1974, Kovar, Rao and Wu, 1988). 
However, recently, under some weak conditions, Shao 
(1993), showed that asymptotic variances of L-statistics 
like Lorenz curve ordinates, quantile shares and Gini 
coefficient can be consistently estimated by delete- 
one-PSU j ackknif'mg. 

The method can be described as the following: 

We assume that the estimate of the unknown 
finite population parameter 0 can be expressed as 

8 = ~(/~), where P is the estimated distribution 
function. The estimate of the distribution function 

P~gl) obtained after removing the j-th sampled PSU of 

the g-th stratum ( j -  1,...,ng, g -  1,...,L) is 

~'(gl) (y) = ~-~= A~'i(g'J) wncil {yhciS~ y ) 

where 

1, hag,  

A~(g,D = h=g, c , j  

[ O, h = g , c = j  

Then 8 ~ ) -  f f (P~) ,  and the resulting 'delete-one 

PSU' jackknife variance estimator for 0 = if(F) is 

L ng-1 n= 
,,,,(8) = ]E ]E - 8) 

g=l ng jffil 

If 8 is substituted by 8.. = ~ g  ~ j  8 ~ ) / n  another 

variant of the jackknife variance estimate is obtained. 

We denote it by vn(fi). 

3.2 Repeatedly Grouped Balanced Half-Sample 
(RGBHS) Method 

In the grouped balanced half-sample method (GBHS) 
of variance estimation, the sampled PSU's in each 
stratum are randomly divided into two groups (halves) 
and the balanced repeated replication method is 
applied to the groups. However, Rao and Shao 
(1993) showed, for stratified random sampling, that 
this method is asymptotically incorrect in the sense 

that the associated t-pivotal t~ = (~"- ~ /~ /v~(~ ' )  
does not converge in distribution to a standard normal 
distribution. To overcome this difficulty they pro- 
posed independently repeating the grouping T times 
and then taking the average of the resulting T 
variance estimates. They showed the asymptotic 
correctness of such an estimator when rain n h .-. ,,,, 

and T-. 0o. In a small simulation study they found 
that the method performs well for T as small as 15 
in the case of smooth estimators. For an estimator of 
the population median, the RGBHS method per- 
formed better than both the jackknife and GBHS in 
the sense that the RGBHS had a smaller relative bias 
and a smaller CV. Although these results were 
obtained for stratified random sampling, this estimator 
is expected to perform well in our stratified multistage 
framework. 

We will apply the RGBHS method to variance 
estimation of LCO and QS. First, in each stratum 
h, (h=l,...,L), we group the PSU's at random into 
two halves, h 1 and /h, containing m~a = [nJ2] and 
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mia -- n h - mhl units, respectively. 
indicator is set to 

Then, the group 

8~ ) _ /_l, h l~r 
1, h2~r ( 

where r--1,...,R denotes a half-sample. The half- 
R R 

(r) 
samples are balanced if E / i ~  ) = 0 and E 8~) 8h, = 0, 

r---0 r=l 

(h ,h / ) .  A minimal set of balanced half-samples is 
obtained from a Hadamard matrix of order R 
(L+I <R~L+4). 

As in the case of the jackknife we assume that the 
estimator of the unknown finite population parameter 

0 can be expressed as 8 = ~£(P), where /~ is the 
estimated distribution function. The estimator of the 

distribution function, F, based on the r- th half- 
sample is 

p(,) (y) _ ~-,s A~.(h x, h.z) w~.il {y~i< y } 

E= A~'(hl, h2)w~.i 

where 

A (r)l h 
h d , , , l ,  h2) = 

1+ nh 8(h r), CEhl, 
2m~ 

nh mhl/)~), c~h  2. 
2m~ m~ 

.(r) Whenn k is an even number then Am(hl, h.z)is 

equal to 2 for all units that are in r and 0 otherwise. 
For an odd case, both half-samples are weighted in a 

way that ~ A~. (hl,h 2) = n h. This is similar to Fay's 

idea, given in section 4 of Dippo et a1.(1984), of 
weighting both half-samples within each stratum. 

Then 8 (r) =f£(/~¢)), and the resulting GBHS 

variance estimator of 8 = ~£(/~), based on the t - th  
random grouping of units, is 

1 R 
Vt GI (O) : "R E (~(rt) - 6 ) 2 ,  

rt=l 
t = 1,...,T. 

By repeating the random grouping of units within 

each stratum T times, computing vt°l(l~) each time 

and then averaging over T repetitions we obtain the 
final RGBHS variance estimator 

T 1 
- v ? ' ( 8 ) .  

t=l 

A variant of the GBHS estimator is obtained by 

replacing 8 by 8 t. = Y~r, o(r')/R' and will be denoted 

by v~G2(8). 

3.3 Hierarchical Monte Carlo Method 

It is felt that the variance estimates of the statistics 8 
(like LCO and QS) which involve quantiles should 
incorporate both types of uncertainty arising from the 
compound randomness of the quantiles and the 
statistics themselves. 

The variance of the estimate 8 can be decom- 
posed into 

v(8) -- z v(8 I~.) + vg(81 ~.)  

assuming that the vector ~,,, - (~p1,...,~r) / has some 

known distribution. 

Given the quantiles, ~m, the conditional variances 

of £(p~, , )  and Q(Pk,,P~I~m)__ can be estimated by the 

Taylorized variance estimator 

n h V "  (%-~h) 2 
1 

w h e r e  ahc = ~ i  Whcidhci and ah = E c  dhc/nh" T h e  

ah~ variates are defined as 

l[yha I(Yha g~pk}-Yh~i£(P~:)] dhc i = -~ 

for LCO, and 
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ahci ~, ~Ptt £ <~p~ 

for QS. 

Under certain regularity conditions Francisco and 
Fuller (1991) extended the Bahadur representation of 
the sample quantiles to a general survey design and 
proved the asymptotic multivariate normality of m 
sample quantiles in the case of a single stage, strat- 
ified cluster sampling showing that 

1 

[ / )  ¢~/)]-~(~,,,, - ~,,,) .-~ N,,,(O,I) (3.1) 

where b = diag(~l,...,a,, ,) and for 1 <k_<m, 

a k = 2z. gk 

with ~v = p-i (Pk +Z,,r~ $k) and ~L = p-a (pk_z.t2.~,). 
Pt Pt 

The estimated covariance matrix of (~(~n),...,P(~v)) / 
is £1 and St is the square root of the corresponding 

diagonal element of Q. 

If :gin (b) (b = 1,...,B) are replicates drawn indepen- 

dently from the distribution (3.1), the variance of 8 
can be estimated by the Monte-Carlo estimator 

- 1 B ~.,E(-t'))+ 1 B = ] C  ( )= 
bffil bffil 

where 8 (b) is the value of estimate (either LCO or 

QS) obtained for the b-th replicate of gin, and 

B 

b=l 

This approach was used by Mantel and Singh 
(1991) for the estimation of the standard errors for 
low income proportions, as well as by Hamilton 
(1986) in the context of a standard error for the 
estimated state vector in a state space model. 

3.4 Estimating Equations Approach to Variance 
Estimation 

The estimating equation (EE) approach of Binder 
(Binder, 1991, Binder and Kovacevic, 1993, Binder and 
Patak, 1994), unlike the resampling methods, is not 
computationally intensive. It provides formulas for 
asymptotic variance which are easy to program despite 
their complicated appearance. 

Applying the EE methodology as given in Binder 
and Kovacevic (1993) we obtain expressions for the 
approximate variance estimators of the LCO and QS 
a s  

Y F ~ = E h  

n h . 
nh_lEc(u~ -uh*) 2 

where u~ = ~ i  ~ '~ u~a, uk = ~ c  U~/nh' and f f~  
is a normalized weight. 

For the LCO, u* variates are def'med as 

, x(y u ha = -~[ ~i-  ~ I{Y~.i < ~p} +P ~p - y ~ L ~ ) ]  

and for OS 

U h c  / = ~ _ < - _ 
P 

where 

4. SIMULATION STUDY 

In order to study the different methods of variance 
estimation for two non-smooth statistics, LCO and QS, 
we use a synthetic population based on the Ontario 
sample for Canadian Survey of Consumer Finance in 
1988. The sample size was 7474 households situated in 
525 PSU's from 91 strata. By collapsing some strata, 
we end up with the micro population of 40 strata with 
525 PSU's and 7474 households. For each household 
we have a nonnegative value of annual income. The 
true values of the parameters of interest were com- 
puted from this population. We generated A=5000 
independent stratified single stage cluster samples with 

total sample size of n -- 108 PSU's. Using Neyman 
allocation, the resulting sample sizes were between 2 
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and 6 PSU's per stratum. PSU's were selected with 
probability proportional to size with replacement. 

The empirical MSE (EMSE) of the parameters of 
interest were calculated using 10,000 independent 
samples using the sample design explained above. 

We considered the following quantile shares: 
Q(o,o.1), 0(0,0.2), 0(o.2,o.4), 0(o.4,o.6), 0(0.6,0.8), 
Q(o.8,1), Q(o.9,1), Q(o.95, 1) and the corresponding 
Lorenz curve ordinates. 

From each sample we computed the estimators and 
the following variance estimators: 

- two jackknife estimators, vj1,V.r 2, 

- two RGBHS estimators, vRo 1, vRo 2 

- the hierarchical Monte Carlo estimator, VMc 

- the estimating equation estimator vm~. 

The jackknife variance estimators were based on 
108 jackknife replicates. For the RGBHS we have used 
41 rows of a 44x44 Hadamard matrix along with T =  3 
repetitions giving a total of 123 replicates. In the case 
of the hierarchical Monte Carlo method we used 
B = 100 replicates. 

In order to evaluate the performance of the 
methods we computed from simulated samples the 
following measures: 

- the relative bias to assess the accuracy of estimators; 
- the coefficient of variation of the variance estimators 

to assess their precision 
- 2-tailed 95 % and 1-tailed 97.5 % upper and lower 

confidence intervals to evaluate the coverage rates of 
confidence intervals. 

5. SUMMARY AND CONCLUSIONS 

The results of our simulation study are presented in the 
following tables. The results for the hierarchical Monte 
Carlo method showed a large overestimation and were 
very suspect. Thus, the numbers for the hierarchical 
Monte Carlo method will not be reported as we are still 
investigating the cause of this discrepancy. Table I 
reports the relative bias of our estimators for 3 LCO's 
and 3 QS's. We report only one jackknife variance 
estimator and one RGBHS estimator, since the results 
for the two variants are similar.  

From Table I, we see that all three methods, 
jackknife, RGBHS, and EE, appear to track the EMSE 

fairly well. It is interesting to note that the jackknife 
estimates the EMSE's of the Lorenz Curve Ordinates 
better than that of the Quantile Shares, while the other 
two methods behave similarly for both income inequal- 
ity measures. 

T a b l e  I 

Relative Bias of Variance Estimators 

L(0.1) 

v jl VRm 
t 

24% -21% 

L(0.4) 8% -3% 

L(0.6) 3% -15% 

Q ( o , o . 1 )  2 7 %  - 1 9 %  

0(0.2,0.4) 48% 1% 

'.' 0(0.4,0.6) 100% -18% 

VMC VEE 

-18% 

-10% 

-15% 

-15% 

-7% 

-15% 

Table II presents the CV's of our estimators. The 
jackknife is slightly more variable than the RGBHS or 
the EE methods. Again, the jackknife behaves better 
for the Lorenz Curve Ordinates than for the Quantile 
Shares, and the RGBHS and lEE behave similarly for 
both inequalities. 

T a b l e  H 

CV's of Variance Estimators 

vj] VRa ] 

L(o.1) 80% 34% 

L(0.4) 67% 43% 

L(0.6) 64% 51% 

0 ( o , o . i )  82% 3 s %  

0(0.2,0.4) 143% 52% 

0(0.4,0.6) 230% 59% 

VMC NEE 

39% 

38% 

46% 

41% 

• 4 3 %  

58% 

Table HI presents coverage rates of nominal 95 % 
confidence intervals. In general, the three methods 
perform well, with the coverage for the Lorenz Curve 
Ordinates slightly better than for the Quantile Shares. 
The jackknife intervals tend to have higher than nom- 
inal coverage rates for the Quantile Shares while the re- 
maining two methods tend to have lower than nominal 
coverage rates for the Quantile Shares. The error rates 
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of the one-sided intervals, not presented here, show 
similar results. 

Table HI 
Coverage Rates of 95 % 

Confidence Intervals 

V j l  VRG 1 

L(O.1) 96% 93% 

L(0.4) 95% 94% 

L(0.6) 95% 94% 

0(0,0.1) 96% 92% 

Q(0.2,0.4) 97% 94% 

Q(0.4,0.6) 98% 91% 

VMC lEE 

93% 

94% 

94% 

92% 

93% 

91% 

In conclusion, we see that for the Lorenz Curve 
Ordinates, the three methods, jackknife, RGBHS, and 
EE, perform well with the jackknife performing slightly 
better in terms of the relative bias and the coverage 
rates but tending to be more variable. For the Quantile 
Shares, the RGBHS and EE approaches perform 
comparably and slightly better than the jackknife in 
terms of relative bias and variability. 
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