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0 Introduction 

in the fields of atmospheric science and oceanogra- 
phy, the study of the fluid motion is of consider- 
able interest. For the most part the physical prin- 
cipals and the equations of motion describing the 
small scale or microscopic evolution of such systems 
is quite well established (e.g. Smagorinsky 1969 and 
Holton 1992). However summary characterization 
of the macroscopic behavior of the system in terms 
of spatial and temporal variation is typically rather 
difficult to predict, except for simple problems such 
as the wave equation in a homogeneous medium. 
Thus there has been substantial interest in the de- 
velopment of empirical methods which are capable 
of describing the phenomenological aspects of fluid 
motion in more macroscopic terms. 

The empirical identification of spatial patterns 
of oscillations has been realized using a collec- 
tion of statistical of techniques including principal 
components analysis, canonical correlations analy- 
sis and first order Markov modeling (Barnett and 
Preisendorfer 1987, Hasselmann 1988, Von Storch et 
al. 1988, Bretherton et al. 1992). Although these 
methods are well established, for a given data set it 
is often unclear which technique and in what form is 
most appropriate. As a result there is often a sub- 
stantial degree of subjectivity involved in the appli- 
cation of these methods. In this paper we propose 
a statistical methodology based on a forecast error 
criterion. The approach involves constructing 'opti- 
mal' one-step ahead forecast rules on half the data 
and then computing the performance of those rules 
on the remaining half of the data. 

In this paper, we apply various methods to a 
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47 year record (January 1946 through June 1993) 
of Northern Hemisphere extra-tropical geopotential 
(500 hPa) height based on daily operational analy- 
ses from the National Meteorological Center (NMC). 
The full resolution NMC grid is a 1977 point oc- 
tagonal superimposed on a polar stereographic pro- 

.jection of the Northern Hemisphere, extending to 
20 degrees north (Wallace et al. 1992). The data 
are projected onto a 445-point half-resolution grid. 
The series was made approximately stationary by re- 
moving the mean.field and the first three harmonics 
of theannual  cycle, separately for every grid point. 
The data were then time-averaged to produce five- 
day averages. In this paper we examine the complete 
series of 3467 five-day averages. 

We begin by presenting a brief description of two 
methods to determine the spatial patterns, empirical 
orthogonal functions (EOF, also known as principal 
components analysis, PCA), and principal oscilla- 
tion patterns (POPs). In Section 3 we describe the 
idea of the one-step ahead 'prediction error, as well 
as its implementation. In Section 4 we describe a 
method that is intended to minimize the one step 
ahead prediction error. The ideas presented in this 
paper are discussed in more detail in two related pa- 
pers (Kooperberg and O'Sullivan 1994a, 1994b). 

2. Spatial-Temporal Decom- 
positions 

In the following we assume that the climatological 
field being studied has been preprocessed, and that 
it can be assumed to be stationary. In particular, 
let x(t) ,  t = 1 , 2 , . . . , T ,  be the vector of length p, 
representing the value of the (preprocessed) field at 
the (discrete) time t. 

2 .1 .  E m p i r i c a l  O r t h o g o n a l  F u n c t i o n s  

Principal components analysis is a well established 
multivariate statistical method widely used in a vari- 
ety of applications (e.g. Mardia et al. 1979). Its de- 
velopment for multivariate time series analysis owes 
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much to the work of of Brillinger and Priestley and 
co-authors (Brillinger 1981, Priestley, 1987). In the 
atmospheric science literature principal components 
are more frequently known as empirical orthogonal 
functions (Barnett  and Preisendorfer 1987, Jolliffe 
1986, Lorenz 1956). Generalizations of EOF for 
the examination of coupled in fields, include canon- 
ical correlation analysis and singular value decom- 
position analysis (Barnett  and Preisendorfer 1987, 
Bretherton et al. 1991, Wallace et al. 1991). 

Empirical orthogonal function analysis (EOF, also 
known as principal component analysis) is based 
on the spectral or eigenvalue decomposition of the 
(marginal) covariance of the measured field, i.e. 
E0 = Var(x(t)).  The covariance matr ix is Herme- 
tian, its spectral decomposition is 

P 

Eo - UDU* - E djUjU~. 
j = l  

The symbol • denotes the transpose of the com- 
plex conjugate. The matr ix U is orthonormal, with 
columns Uj for j - 1 , 2 . . . p ,  and D is a diago- 
nal matr ix  with as elements the eigenvalues of E0, 
"~1 ~ "~2 ~ . . .  ~ "~p ~ 0. The columns of U rep- 
resent orthogonal linear combinations of the process 
with maximal marginal variance. Projecting onto 
the first, K columns gives 

K 

x(t) - E Ukzk(t) + ~g(t) ,  (1) 
k--1 

where zk(t) - U;x( t )  and ~K(t) -- E~>KU~Z~(t). 
Note that  zk(t) is a scalar, while ~K(t) is a vector of 
length p. For K sufficiently large, the total marginal 
variance of riK can be made small. With this we have 
a representation of the process in terms of a sum of 
a fixed number of K spatial patterns (Uk's) forced 
by statistically uncorrelated (marginally) temporal 
oscillation patterns zk(t). 

In Figure 1 we show the two EOFs, U1 and/]2 as 
well as the corresponding temporal oscillation pat- 
terns zl(t) and z2(t) for the 500 hPa geopotential 
height field for the first 1700 five day intervals (1946- 
1969). Note that  although the EOF analysis ignores 
the temporal  correlations in the data, the spectrum 
of the temporal  patterns, zk(t) is red, as can be seen 
from the spectral estimates and autocorrelations. 

The first two EOFs are recognized as mixtures of 
the North Atlantic Oscillation (NAO) and the Pa- 
cific North American (PNA) pattern. These pat- 
terns are well established in the atmospheric sciences 
(Wallace and Gutzler 1981). 

2.2. Principal Oscillating Patterns 

This technique, also known as POPs, was intro- 
duced by Hasselmann (1988) and by Von Storch et 
al. (1988) and has become widely used in the atmo- 
spheric science literature. The method is based on 
an AR(1) representation for the process 

x(t) - Bx ( t  - 1 ) +  c(t) 

where c(t) is assumed to be a mean zero uncorre- 
lated (in time) process. The coefficient matr ix B is 
expanded in terms of its eigenvectors, Ud, and cor- 
responding eigenvalues Aj, both of which may be 
complex. The eigenvalues are ordered by modulus, 

I 11 >_ > . . .  > 
Typically, the coefficient matrix B is estimated by 

/~ - -  EolE1.  In particular, the eigenvalue decompo- 
sition of/~ is now 

P 

[ ~ -  E1Eol  - UDU* - E djUiU ~. 
j = l  

(2) 

Typically, some of the eigenvectors of /~  are real, 
while some pairs may be complex. Van Storch et 
al. (1988) interpret the real eigenvectors as standing 
oscillatory patterns while they interpret the complex 
eigenvectors as propagating patterns. 

Note that  in contrary to the spatial patterns for 
EOF, the eigenvectors for /~ are not orthonormal. 
However, it is still straightforward to decompose x(t) 
in a similar fashion as (1). 

The patterns that  are obtained from (2) are of- 
ten not very satisfactory. This is because the esti- 
mate of E0 is often quite noisy, in fact, it is often 
almost singular. Thus when inverted, the smallest, 
and least interesting, eigenvalues and eigenvectors of 
E0 dominate the decomposition. To circumvent this 
problem, it is customary to first project the data 
on the first k empirical orthogonal functions of x(t), 
before applying the canonical correlations a lgo r i t hm.  
This is known as the Barnett-Preisendorfer (BP) ap- 
proach (Barnett and Preisendorfer 1987). 

The interpretations of the spatial patterns, Uj's, 
in EOF and POPs are quite different. The EOF 
patterns are defined without regard to the temporal 
structure of their forcing terms zk's. Indeed there 
is the tacit assumption that  these terms are serially 
uncorrelated. By contrast, the POPs analysis, are 
at tempting to extract patterns whose forcing terms 
have a richer and potentially predictable stochastic 
evolution characteristic. In the case that  the process 
is rescaled so that  the marginal covariance is the 
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identity, the results of the POPs and EOF tend to 
be more complementary. 

In Figure 2 we show the first two principal oscilla- 
tion patterns for the first half of the complete series, 
both of which turned out to be real. As can be seed 
from this figure, the POPs patterns are considerably 
more noisy than the EOF patterns. 

3. T h e  o n e - s t e p  a h e a d  fore-  

c a s t  e r r o r  

Which method to use? Suppose that  one is analyz- 
ing a climatological field, should one use EOF, CCA, 
POPs, BP-CCA or BP-POPs to compute the spatial 
patterns that  determine a spatial-temporal decom- 
position? Another question is how many patterns 
one should consider? Although one would typically 
only interpret a few patterns, for a larger climatolog- 
ical modeling effort one would want to include any 
patterns that  have more signal than noise. Indeed, 
the number of spatial oscillation patterns, K, acts as 
a regularization parameter.  If K is too small there 
will be substantial bias in the model; on the other 
hand if K is too large the model will tend to overfit 
the data. As one approach in answering these two 
questions we consider the one-step ahead forecast 
error. 

Let x(t) be a climatological field, and let U be 
a p × p matrix,  containing the spatial patterns as 
columns in decreasing order of importance. Let WK 
be the p × K matr ix  consisting of the first K columns 
of U. Let zK(t) be the least squares projection of 
x(t) on WK. 

Suppose that  we know the temporal  oscillation 
patterns z g up to t ime t, and we wish to predict 
the complete field at t ime t + 1, x(t + 1). A mea- 
sure of how good of a summary  of the field z g and 
WK are would be the difference between the pre- 
diction ~(t + 1) of x(t + 1) on the basis of the in- 

format ion  contained in the projection of x(t) onto 
the patterns WK, i.e. zg(s) for s < t. To for- 
malize this, let F E ( K ,  U) be the expected value of 
the squared norm of the prediction error, that  is, 
EIl~(t + 1 ) -  x(t + 1)ll2/EIIx(t + 1)112 . The inter- 
pretation of F E(K, U) is, that  it is the fraction of 
the variance that  cannot be explained if we forecast 
one-step ahead based only upon the information con- 
tained in the projection of x(t) on WK for s ~_ t. 

This definition of the forecast error is motivated 
by the desire to identify patterns with some degree 
of temporal  persistence, since those patterns seem 

best suited for tasks like numerical weather fore- 
casting. We could thus answer the questions posed 
at the beginning of this section using the one-step 
ahead forecast error: when we have to choose be- 
tween two decompositions U and U', both with K 
patterns based on the forecast error, we choose U 
over U' if FE(K,  U) < r E ( K ,  U'). Similarly, if we 
have to determine how many spatial patterns K of 
a decomposition U we are going to use, we might 
choose that  value of K that  minimizes FE(K,  U). 

To apply the idea of minimizing the one-step 
ahead forecast error, the patterns are estimated on 
the first half of the data and a corresponding op- 
timized linear one-step ahead forecast rule is also 
estimated there. Subsequently, this forecast rule is 
evaluated on the second half of the data providing an 
estimate of the predictive performance of the model. 
The approach is described in detail in Kooperberg 
and O'Sullivan (1994a). 

4. P r e d i c t i v e  O s c i l l a t i o n  Pa -  

t e r n s  

As an alternatice to EOFs or POPs we can define 
the patterns such that  the one-step ahead forecast 
error is minimized. We refer to Kooperberg and 
O'Sullivan (1994b) for the details. The main ingre- 
dient in the derivation is Kolmogorov's formula (see 
for example Chapter l0 of Priestley, 1987), which 
states that  the minimal forecast error for z(t) is 

{17/: } E[(z(t+l)-S(t+l))  =] - 2~exp ~ gh(w)dw , 

where h(w)is the spectral density of z(t). The first 
predictive oscillation pattern A is now found as the 
maximizer of 

A'A I -  27r exp ~ g At ~-(h) A 
. L -  axx  

A 

where P~0 is the variance covariance matr ix  of the 
field and f(h) is a consistent estimate of the spectral 
density matr ix of the field. Higher PrOPs, orthog- 
onal to the earlier PrOPs, are derived in a similar 
fashion. 

In Figure 3 we give the spatial patterns for the first 
two PrOPs. As can be seen, the first PrOP is very 
similar to the first EOF. The second PrOP is actu- 
ally a combination of the second and the third EOF. 
Here we should keep in mind that  while the EOF de- 
composition ignores the temporal  dependence of the 
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field, the PrOP decomposition takes this into ac- 
count. The similaroty between the PrOP and EOF 
patterns suggests that the forecast errors based on 
these two decompositions may be very similar. And 
indeed, in Figure 4 we notice that the one-step ahead 
forecast errors for EOF and PrOP are indistinguish- 
able. Both of these methods produce much smaller 
errors than POP does. 

5. D i s c u s s i o n  

In the atmospheric sciences there has been consider- 
able interest in the development of empirical meth- 
ods which are capable of decomposing spatial and 
temporal variation into a small number of fixed pat- 
terns. Techniques that  are used include empirical 
orthogonal functions, canonical correlation analysis 
and principal oscillation patterns. All of these meth- 
ods have their advantages. Patterns that are ob- 
tained using empirical orthogonal functions explain 
a large fraction of the variance of the field, how- 
ever, the spatial patterns need not reflect anything 
to do with the evolution of the field, which is of- 
ten of prime interest for modeling purposes. On 
the other hand, canonical correlations analysis and 
principal oscillation patterns focus on components 
with a strong temporal auto-correlation pattern, but 
there is no constraint that  the patterns are necessar- 
ily highly correlated with the original field. 

In this paper we discuss a criterion that can be 
a tool when comparing different methods. The one- 
step ahead forecast error measures how well one is 
able to predict the next instance of the field, based 
on the summary patterns up to now. Clearly a 
good prediction requires both high correlation be- 
tween the patterns and the field and a strong tem- 
poral auto-correlations of the patterns. The de- 
composition based on predictive oscillation patterns, 
described in detail in Kooperberg and O'Sullivan 
(1994b) minimizes the one-step ahead prediction er- 
ror. 

When applied to a 47 year record of Northern 
Hemisphere extra-tropical geopotential height, we 
found that. EOF and PrOP performed equally well, 
with respect to the one-step ahead forecast error, 
while both performed better than POPs. 
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Figure 1. The first two empirical orthogonal functions and their corresponding temporal  oscillation pat terns 
for the geopotential height. On the right side of the figure we show for a part  of zk(t), as well as the first 30 
autocorrelations and an estimate of the log-spectral density of zk(t). 
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Figure 2. The first two principal oscillation patterns for the geopotential  height. 
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Figure 3. The first two predictive oscillation patterns for the geopotential  height. 
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Figure 4. Forecast error performance of the alternative decomposit ion methods  as a function of the number 
of patterns included. There is only a slight improvement in the forecast error after 25 components  - hence 
these are not included. 
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