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A b s t r a c t  

We examine the problem of constructing the- 
matic maps which show land-use patterns, given 
satellite data and deterministic prior information. 
The latter came from a road network. We make 
the simplifying assumption that  the satellite ob- 
servations are conditionally independent, given the 
scene. We specify a normal likelihood, the usual 
normal-inverse Wishart  prior for the distributional 
parameters, and a Markov random field prior for 
the image together with the road information. Our 
results indicate that  the Markov random field prior 
and road network information help improve clas- 
sification, despite evidence that  the assumption of 
normal likelihoods is suspect. 
keywords :  Gibbs sampling, Markov random 
fields. 

1. I. I n t r o d u c t i o n  

It is commonplace to develop thematic maps 
from digitized satellite imagery. Here we define a 
thematic map to be a two-dimensional representa- 
tion of the earth's surface, in which each pixel is 
associated with one and only one land-use classifi- 
cation. In practice, most maps are developed using 
maximum likelihood. However, it has been shown 
(e.g., see Besag 1986, Besag et al. 1991; Klein and 
Press 1992; Wilson and Green 1993) that  Bayesian 
models often result in maps of far superior quality. 
In this paper, we report the results of an experi- 
ment in which thematic maps were developed from 
multidimensional satellite data. In one instance we 
employed a simple Bayesian model which just spec- 
ified a Markov random field prior. In another, we 
incorporated deterministic information from a road 
network into the Bayesian model (an idea first ex- 
plored by Frigessi and Stander 1994). All maps are 
compared with one produced via maximum like- 
lihood and with a map produced from digitized 
low-level aerial photography. However it should be 
noted that  the latter map is from 1984, while the 
satellite data  is from 1986, so that  while the aerial 
photography map can be considered to be a sugges- 
tion of the "true map," it cannot be considered to 
be equivalent to the truth.  This complicates some- 
what our later judgments as to how well methods 
are performing. 

2. M a x i m u m  Like l ihood  m e t h o d  

To facilitate discussion, we introduce the fol- 
lowing notation, borrowed largely from Besag 
(1986): Let S represent the two-dimensional scene 
to be mapped. Suppose there are n pixels in the 
map and each pixel is to be assigned to one and 
only one of c classes. Let X - (X1,  X2,  ..., X n ) '  
denote a random vector where Xi  assigns a class to 
pixel i. Denote the land use classifications by the 
integers 1, 2, ..., c, and let xi be a realization of 
Xi ,  i.e., xi  takes on one of the unordered values (1, 
2,..., c), i = 1, 2, ..., n, and let x = (x l ,  x2, ..., xn) ' .  
Furthermore, let Yi be the p-dimensional observa- 
tion at pixel i, and y = (y~, y~, ..., y~)'. Normally, 
the first step in the mapping process is to acquire 
a data  set, known as training data, for which the 
classification of each pixel is known, and for which 
there is satellite coverage. 

The maximum likelihood (ML) approach bases 
inference on the assumed probability densities for 
the observations in each land-use class. It is usual 
to assume that  (y j lx j  = k) ,,~ g ( p k ,  F.k), j = 1, 
2, ..., n, for both the pixels in S and the training 
data (we will examine the normality assumption 
later). The y~s are assumed to be conditionally in- 
dependent. Next, the training data  are sorted into 
classes, and ttk and Ek estimated from the train- 
ing data pixels in class k. Each pixel is assigned to 
the class with the greatest likelihood. This proce- 
dure is carried out pixel by pixel, and it is implic- 
itly assumed that  the x j ' s  are independent. How- 
ever, once the map is constructed, it is common to 
observe an isolated pixel classified into one cate- 
gory while all the surrounding pixels are classified 
into another. This "salt and pepper" appearance 
is usually considered an anomaly, and some sort of 
ad-hoc, majority-vote smoother is passed over the 
map in order to eliminate these situations. 

3. D a t a  

In this study, we use data from the thematic 
mapper (TM) satellite. This satellite records data 
in 7 bands, and each observation represents a 30m × 
30m pixel on the ground. The digitized reflectances 
in each band are discrete variables with 256 possible 
values. 

Our data are from a summer 1986 image of 
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the Hightstown US Geological Survey quadrangle in 
New Jersey. The quadrangle is located in the cen- 
tral  portion of the state, at the transition between 
the Piedmont and Coastal Plane physiographic re- 
gions. The area which historically has been used for 
agricultural production is undergoing conversion to 
more intensive land use activities and exhibits a 
complex landscape pattern. More details about the 
data can be obtained from Airola and Vogel (1988). 

We chose a cloud-free 200 × 50 pixel area 
(10,000 pixels) for detailed study. Additionally, we 
randomly selected 50 observations in each of the five 
land-use categories from the remaining map area to 
serve as training data. 

Our deterministic information consisted of a 
digitized road network for the Hightstown quad- 
rangle. Regrettably, the road network is circa 1990. 
The local history of the Hightstown quadrangle is 
such that  there was a period of rapid conversion of 
agricultural land to housing developments in the 
mid 80's. This rapid phase of conversion ended 
in the late 80's, when real estate values began to 
decline. As the TM data were from 1986, we re- 
quested that  a remote sensing expert familiar with 
the Hightstown area "mask" out all roads which 
were thought to possibly post-date the 1986 TM 
image. The resulting road network is shown for the 
200 × 50 pixel area under study in Figure 1. 

We also have access to a 1984 image of the 
Hightstown quadrangle. This image was produced 
by the State of New Jersey's Department of En- 
vironmental Protection and Energy (DEPE) and 
was derived from intensive classification of low- 
level aerial photography. We regard this map as 
a pseudo-benchmark against which we may judge 
maps constructed from TM data. However, due to 
the discrepancy in the dates (1984 vs. 1986) and 
the fact that  we know that  this area underwent de- 
velopment during the two year interval, we can only 
regard the DEPE as an approximation of the truth.  
Note that  we used the DEPE classification to select 
training data. Hence it is possible that  some of the 
pixels in the training data are incorrectly classified, 
leading to poorer estimates of #k and Ek, k = 1, 
2,..., c, than would otherwise be expected. 

4. B a y e s  M o d e l  

Our basic model is similar to the ones proposed 
in the classic papers by Geman and Geman (1984) 
and Besag (1986). We assume the prior density to 
be a Gibbs distribution, or equivalently, a Markov 
random field (MRF). We also assume the fields 
are locally dependent with second order neighbor- 
hoods, i.e., p(xi Ix-i) = p(xi Ix~,), where x_~ repre- 

sents the classification of all pixels in S except pixel 
i; x~ represents the classification of all pixels in 
the neighborhood of pixel i; and the neighborhood 
of pixel i consists of the 8 nearest pixels (i.e., the 
pixels above, below, to either side, and diagonally 
adjacent). We assume that  xi is not a member of 
X b i  . 

Let u~(k) and v~(k) be the number of first or- 
der neighbors (above, below, and to either side) 
and number of second order neighbors (diagonal), 
respectively, of pixel i that  are members of class k 
in an arbitrary realization of X. Then we write the 
MRF as: 

Here /3k is a positive constant which encour- 
ages clumping of pixels of the same land-use. As 
/3k, k - 1, 2, ..., c is unknown, a formally com- 
plete Bayesian model would include a prior den- 
sity for this parameter. However, it is mathemati- 
cally intractable to solve for the posterior distribu- 
tion p(xj -- klyj) or the conditional distributions 
needed in Markov chain Monte Carlo methods if 
a prior density is assigned to /3k (see, e.g., Besag 
1986). Besag (1986) suggested a pseudo-maximum 
likelihood method for estimating /3k. In an ear- 
lier, unpublished simulation study using data from 
the same quadrangle, we found that  the pseudo- 
maximum likelihood estimates were close to 1.0 for 
all categories, and that  the resulting map was in- 
sensitive to moderate perturbation of the values for 
this parameter. Hence in the present study we have 
set/3k = 1.0 Vk. The diagonal neighbors are down- 
weighted by (1 /v~)  to reduce rotational variability 
(Frigessi and Stander 1994). 

With regard to #k and Ek, we use the usual 
conjugate normal and inverse Wishart  prior distri- 
butions (see, e.g., Gelfand et al. 1990). The com- 
plete Bayes model is then 

(yj Ixj -- k, #k, Ek) ~ N(#k,  Ek), j = 1, 2, ..., n, 
(1) 

( + vi(k) 

i = 1,2, . . . ,n,  (2) 

(#i[~, F) ~ N(r/, F), i = 1, 2, ..., c, (3) 

(E~-'[p, R ) ~  W(p, (pn) - ' ) ,  i =  1,2,. . . ,c. (4) 
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We also assume conditional independence of 
the #i 's  and Ei's. It is implicit in model [1] tha t  
the pixels are conditionally independent, given the 
scene. This is usually felt to be an inappropriate as- 
sumption (e.g.,  see Hjort and Mohn 1987). It seems 
intuitive tha t  pixels of the same class which are 
close together will be more alike than pixels of the 
same class which are far apart.  Green and Wilson 
(1992) have modeled this spatial correlation. How- 
ever, their model includes an additional parameter  
to measure the strength of the correlation. A for- 
mally complete Bayesian model including a prior 
distribution for this parameter  seems intractable 
for the same reasons as for ilk. The alternative 
is to specify a value for the parameter,  or employ 
a pseudo-maximum likelihood technique. Inclusion 
of this parameter  also complicates the full condi- 
tional distributions of Pk and Ek, making Markov 
chain Monte Carlo difficult. Hence, in the current 
report we make the simplifying assumption of con- 
ditional independence. Work on a more realistic 
model is ongoing. 

Let y(k) indicate the subset of y consist- 
ing of all training pixels which are members 
of class k. From [1], [3], and [4], we derive 
the densities p(/zk]E;1,y (~)) and p ( E ; 1 ] l z k , y ( k ) ) .  
These are well known (e.g.,  see Gelfand et 
al. 1990) to be: ~ 
N ( u k , ~ : )  and ( E ; 1 ] # k , y ( k ) , p , R )  ~ W ( q k , q k ) ,  
where: uk = ~a { ( m a E ; l y  (k)) + r - ' , } ;  : 

(mk E ;  1 + F -1) - '  ;~ (k )  ,~, y[k) 
=E =I Qk = 

- 1  
F 

- I.tk)(y~ k) - 
"! 

P; y~k) is the observation at  pixel i in y(k); and mk is 
the number of training pixels in category k. These 
conditional densities represent the prior densities of 
#k and Ek before the map is constructed. All tha t  
remains to complete the model is to specify values 
for r/, F, p, and R. We let F -1 = 0, indicating vague 
prior information on #k and obviating the need to 
specify 7/. Similarly we let p = 0, obviating the 
need to specify R. We view this as a way of indi- 
cating tha t  we know nothing about  the distribution 
of E~ 1 before viewing the training data. 

The object of interest is the posterior distri- 
bution p ( x j  = k l y j )  , j = 1, 2, ..., n. However, 
analytic solution is impossible and we proceed by 
using a Gibbs sampling variant of Markov chain 
Monte Carlo to sample from the posterior distri- 
butions, and hence to estimate any function of the 
posteriors to any desired degree of accuracy. For 
more details on Gibbs sampling in the context of 
models of the type used here, consult, among oth- 

ers, Frigessi and Stander (1994), Gelfand and Smith 
(1990), Gelfand et al. (1990), or Smith and Roberts 
(1993). 

4.1 D e t e r m i n i s t i c  I n f o r m a t i o n  

The above represents our basic Bayesian 
model. As mentioned earlier, we also have access 
to deterministic prior information: the road net- 
work. We incorporated this information by mod- 
ifying our prior distribution to: p ( x i  = k]x6~, 
d,) oc exp{flk [ u i ( k ) + v i ( k ) / x / ~ ] } .  p(d i[x ,  = k,  
x6~). Here di is the distance to nearest road for 
pixel i. Values for p(di[x i  -- k,  x6,)  were est imated 
as follows: The 200 × 50 section to be mapped was 
removed from the quadrangle. Then four neighbor 
classes were established for the remaining pixels. 
These classes were 0-2, 3-5, 6-7, and 8 neighbors 
of the same land use type. The pixels were sorted 
by land use class and neighbor class. Next the pix- 
els in each land use-neighbor class were sorted into 
classes depending on distance to the nearest road. 
Six such classes were established. These were: i. 
di _< 30, ii. 30 < di _< 60, iii. 60 < d~ _< 120, 
iv. 120 < di _< 240, v. 240 < di _< 300, and 
v/. 300 < di.di  <_ 30. The number of pixels in 
each land use-neighbor-road distance class was di- 
vided by the number of pixels in the appropriate 
land use-neighbor class, resulting in a multinomial 
distribution for p(di]x i  -- k,  x6~). 

4.2 G i b b s  s a m p l e r  

Here we give a brief description of our applica- 
tion of the Gibbs sampler. Given initial guesses for 
each parameter,  we randomly draw a value for #k 
from P(#k Ix, y, E~ -1). Then we draw a value from 
P(Ekl]x,  Y, #k) (where #k was set to the values just  
obtained). Finally we cycle through the map, draw- 
ing a value from p ( x j  = k lY j ,  x _ j ,  #k ,  E~- 1) for each 
pixel, given the values just obtained for #k and E~-1 
and the current classifications of the pixels in its 
neighborhood. Each randomly drawn value for xj 
becomes the current value for tha t  pixel. After we 
cycle through the map, we draw a new value for 
#k and repeated the process. After a suitably large 
number of iterations, the randomly drawn values 
for xj,  #k, and Ek 1 are regarded as having arisen 
from their joint posterior distribution, and the val- 
ues of xj as having arisen from the marginal poste- 
rior distribution for pixel j ,  j = 1, 2, ..., n. 

In order to investigate the effects of our prior 
assumptions, we also fitted the Bayes model with- 
out prior distributions on #k and Ek (i.e., these 
parameters were held fixed at  the mle's from the 
training data) but with the road distance informa- 
tion, and also without the prior distributions on #k 
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and Ek or the road distance information. Hence 
in the former case we included the MRF and the 
deterministic road information in the prior, and in 
the latter, we only included the MRF.  

Determining when the Gibbs sampler has con- 
verged to the target  posterior distributions was 
problematic. Due to the vast number of parame- 
ters, convergence diagnostics based on the observed 
s tream of values for each parameter  were impracti- 
cal. In this study, we use the following crude tech- 
nique: after each iteration, we computed the num- 
ber of pixels in each land use category. When these 
numbers appeared to have settled down from iter- 
ation to iteration, we concluded tha t  the sampler 
had converged. 

After we were satisfied tha t  convergence had 
been at tained,  we ran the sampler for an additional 
t cycles. For each pixel, we collected the number 
of times it was classified into each category during 
the t cycles. These values formed a histogram, and 
the pixel ul t imately was assigned to the category 
corresponding to the mode of the histogram. 

We used the MLE's  from the training data  as 
s tar t ing values for #k and Ek and the maximum 
likelihood classifications as start ing values for the 

! 
x~s. For all models, it appeared tha t  the Gibbs 
sampler converged quickly (< 100 iterations). Nev- 
ertheless, we ran the Gibbs sampler for 1000 iter- 
ations, and discarded the values from the first 500 
iterations. Hence our Gibbs sampling estimates are 
based on samples of size 500 from the marginal pos- 
terior distribution for each pixel. 

5. R e s u l t s  

The D E P E  classification is presented in Figure 
2, and the maximum likelihood solution is given in 
Figure 3. In these maps, as in all subsequent ones, 
we have labelled the land-use categorizes follows: 1 
= developed, 2 = agriculture, 3 - forest, 4 -- wa- 
ter, and 5 -- transit ional areas. The shading in the 
figures assigns the lightest color to category 1 (de- 
veloped) and the darkest to category 5 (transitional 
areas). Figure 3 displays the maximum likelihood 
map, which is clearly unsatisfactory. -The map re- 
sulting from specifying priors for #k and Ek and 
a MRF prior, but  without using the road distance 
information is displayed in Figure 4 while the map 
from assuming a MRF prior and using the road dis- 
tance information with no priors for #k and Ek is 
displayed in Figure 5. The other two Bayes maps 
(MRF, priors #k and Ek, road distance information 
used; and MRF only) were similar to Figure 5. 

The Bayes map in Figure 5 is generally qual- 
itatively superior to the maximum likelihood map 

in Figure 3. It seems to capture most of the struc- 
ture evident in the D E P E  classification (Figure 2). 
The map in Figure 5 is extraordinary; although it 
appears to capture most of the general detail in the 
DEPE image, large areas are classified incorrectly. 
In particular, many of the developed areas are clas- 
sifted as water. Recall tha t  this map results from 
a assuming a Markov random field, and priors on 
#k and Ek, but without using the road information. 
We believe tha t  the reason for the disappointing re- 
sults of this model are due to misspecification of t h e  
likelihood; the data  are not multivariate normal. To 
support this claim we have drawn a random sample 
of size 1000 without replacement from the data  in 
each land-use category, and constructed normal Q- 
Q plots for the data  from each band. For nearly all 
band-category combination, the Q-Q plots showed 
indications of non-normality. As an example, a 
Q-Q plot from band 7 for the developed category 
is displayed in Figure 6. At tempts  to transform 
the data  to more closely approximate normal data  
using s tandard transformations were unsuccessful. 
There are at least 3 possible reasons for the non- 
normality evident in the Q-Q plots. First, it may 
be due to the discrepancy between the dates of the 
D E P E  image and the TM data.  The da ta  in the 
Q-Q plots were selected based on their D E P E  clas- 
sifications, but  the da ta  is the TM data. Secondly, 
the classes may be too broad. For instance, the cat- 
egory "developed" includes housing developments, 
industrial areas, and parks. Perhaps the data  would 
more closely approximate a normal distribution if 
finer classes were used. Finally, it may be tha t  the 
data  are truly not normally distributed. 

We believe the above problem with the mis- 
specified likelihood arose only in Figure 4 because 
for this map, we specified prior distributions for 
#k and Ek, but did not use the deterministic road 
information. Since the likelihood was apparently 
misspecified, there is no reason to believe the con- 
jugate normal-inverse Wishart  prior on #k and Ek 
is appropriate. For the Bayes model which included 
priors on #k and Ek and the deterministic road in- 
formation, the latter apparently compensated for 
the misspecification of the likelihood and the priors 
on #k and Ek. 

In terms of percent error, when judged against 
the D E P E  classification in Figure 2, 28.5% of the 
pixels in the maximum likelihood map were incor- 
rect. For the Bayes maps in Figures 4 and 5, the 
percentages incorrect were 36.5%, and 21.4%, re- 
spectively. The benchmark for acceptance of a the- 
matic map is 80% accuracy. Hence while none of 
the maps created here exceed the usual accuracy 
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requirement, the map in Figure 5 is quite close. 
Given that the truth is unknown, it is possible that 
these maps are within the required 80% accuracy 
level. 

6. Conclus ions  

It seems the Markov random field and deter- 
ministic road distance information are helpful in 
creating thematic maps. However, the usual dis- 
tributional assumptions for the satellite data are 
questionable. 

There is clearly scope for additional research 
on incorporating deterministic information such as 
road networks in the image prior. Other source of 
information, such as elevation, and/or hydrologi- 
cal information might be used. Also, rather than 
incorporating this prior information by means of 
a multinomial distribution as done here, it may 
be preferable to characterize this information by 
means of continuous functions as done in Frigessi 
and Stander (1994). Of course in the latter ap- 
proach, estimation of the function parameters may 
be problematic. 
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