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SUMMARY 

The usefulness of certain geostatistical techniques 
in the design of an agricultural field trial was examined. Of 
immediate concern was the use of these techniques to help 
identify an optimal sampling scheme for characterization of 
soil spatial variability. This was achieved by determining, 
a priori ,  the prediction error associated with various 
sampling designs. Our ultimate goal is to use geostatistical 
techniques to help minimize the confounding ird]uence of 
location effects on treatment differences. Knowledge of soil 
spatial vm'iability will be used to help locate experimental 
blocks on areas that are as uniform as possible, thus 
increasing the precision with which treatment differences 
can be detected. Kxiging will be used to produce 
interpolated contour maps of various soil properties at the 
experimental field site. 

In June 1993, a soil survey was conducted at the ' 
proposed field site. Data on various soil characteristics 
were collected on a 50 m x 75 m grid. Geostatistical 
analyses were performed on these data using public domain 
geostatistical software packages (GEO-EAS and 
GEOPACK) developed at the U.S. Environmental 
Protection Agency. Semivariograms were produced for 
each soil ch,'u-acteristic and were modeled using a non-linear 
least-squares fitting procedure (Marquardt, 1963). Soil 
semi-variogram model parameters were input to the 
Optimal Sampling Scheme For Isarithmin Mapping 
(OSSFIM) program which was used to determine the 
prediction error associated with various grid sample  
spacings (McBratney and Webster, 1981). Output from 
OSSFIM allowed us to select a soil sampling scheme--i.e., 
of known accuracy and cost--tbr a more intensive 
characterization of the field site. 

INTRODUCTION 

In April 1993, the Beltsville Agricultural Research 
Center (BARC) at Beltsville, MD initiated a long-term field 
trial in sustainable agriculture in order to better understand 
the environmental and economic ramifications that these 
crop production ~,stems would have in the Middle Atlantic 
States. In contrast to conventional farming practices which 
use commercially available, petroleum-based inputs to 
maintain soil fertility and control weed and insect pests; 
sustainable systems make use of "on-farm" inputs such a s  
animal ,and green manures, periodic crop rotations, various 

tillage practices, and natural biological cycles to accomplish 
identical ends. Because sustainable agricultural systems are 
inherently more self reliant, and tend to be less exploitive of 
the natural resource base than more conventional 
production systems, the long-term viability of these systems 
is enhanced. 

A wide range of sustainable agricultural 
production practices will be examined at BARC using a 
multidisciplinary, systems approach. The inherent 
comple:,dty of such an approach makes design and layout of 
the field plots challenging. For example, the experimental 
design must allow for the analysis of numerous soil and 
crop characteristics collected at different spatial and 
temporal scales. Moreover, some experiments are expected 
to show subtle treatment differences, while others may 
require a number of growing seasons before any treatment 
differences are expressed. In order to properly evaluate 
these treatment effects, it is imperative to establish a high 
level of experimental precision. 

Achieving such a degree ofe,'ff~mental precision 
is made more difficult because large plot sizes (0.75 ha to 
1.00 ha) must be used at the field site (16.2 ha) due to crop 
management considerations. If plots of this size were 
located at the field site without regard to soil spatial 
variability, location effects would likely confound or 
obscure treatment comparisons. However, if plots were 
located on areas as homogeneous as possible, the power to 
detect experimental treatment differences would be 
incre, "ased, and the effectiveness of blocking and replication 
would be improved. 

In June 1993, a survey of the experimental field 
site was conducted. The following soil physical and 
chemical properties were determined from bulked samples: 
depth of the A horizon (A), available phosphorus (P), 
available potassium (K), available calcium (Ca), available 
magnesium (Mg), cation exchange capacity (CEC), and pH. 
The sample grid was approximately rectangular, consisting 
of 5 transects, each 75 m apart, with samples being 
acquired roughly every 50 m for a total of 47 soil samples. 
The U.S. Department of Defense's Global Positioning 
System (GPS), a satellite-based navigation and positioning 
system, was used to geographically locate the soil sample 
sites to sub-meter accuracies. In addition, color infrared 
(CIR) aerial photographs were acquired during the growing 
season in order to estimate relative vegetation amount at a 
number of significant crop development stages. 

• Georectification of the C IR imagery was accomplished 
;~using ground control points established with the GPS. 
• A geographic information system (GIS), which is 
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explicitly designed to handle spatially referenced data, will 
be used to analyze the soil and vegetation data in order to 
determine what areas of the field site are the most uniform. 
Uniformity, however, must be defined in terms of crop yield 
because most BARC researchers will use this variable to 
assess treatment differences. Although most of the GIS data 
layers will be derived from soil physical and chemical 
properties, these data can be expressed in terms of their 
potential effect on crop yield. Once each soil data layer is 
translated into its respective crop yield data layer, it will be 
possible to produce an integrated or summary yield map 
which can be used to identify suitable locations for the 
experimental field plots. 

Each soil parameter was separated into four 
classes representing crop yield potentials that ranged from 
low to high. Most of these classes were established a priori 
according to standard agronomic recommendations; the 
remainder were established empirically according to the 
range of values found at the field site. For example, depth 
of the A horizon often influences crop yield because the soil 
in this layer has the greatest capacity to provide water and 
nutrients. In general, the deeper the A horizon; the more 
productive the soil. At the experimental field site, A ranges 
in depth from 16 cm to 34 cm. Four classes with means of 
19 cm, 23 cm, 28 cm, and 33 cm were developed in order 
to describe the variation in A across the site. 

It is imperative to ensure that soil sampling 
schemes be designed such that data are collected at a level 
of precision such that class means, like those determined for 
A horizon depth, can be separated statistically. In a manner 
analogous to the t test, class means were considered to be 
statistically sep,'u-able if they were 4-2 standard en'ors apart. 
The OSSFIM program was used to produce kriging 
variance vs. grid spacing plots, from which it was possible 
to determined what grid spacing would be necessary to 
achieve a desh'ed level of error. For example, to ensure that 
the A horizon class means could be separated, soil data 
must be collected at a standard error that is less than or 
equal to 1. 

BACKGROUND 

Agricultural researchers have long understood that 
location effects, which are ollen caused by natural soil 
variability or previous land-use practices, can significantly 
reduce the ability to detect experimental treatment 
differences. During the 1930s, attempts were made to 
understand the relationship between plot size or shape and 
experimental en'or (Christidis, 1931; Smith, 1938). 
Various techniques such as smaller plot sizes, different 
blocking designs, and randomization of treatments were 
developed to ensure that field observations were 
independent--i.e., treatment comparisons could be made 
with equal precision, even though a spatially autocorrelated 
variance struc~e might be present at the site. Recent work 

has shown, however, that these traditional techniques are 
not as robust as might be desired (Lin et al., 1993; van Es 
and van Es, 1993). This has prompted the development of 
new statistical techniques and alternative experimental 
designs in order to better account for the effect of field 
variability on experimental results (van Es et al., 1989; 
Nelson and Buol, 1990; Perry et al., 1993). Little work has 
been done, however, to evaluate whether geostatistics can 
be used to facilitate the design of agricultural field 
experiments (Perry et al., 1993). Geostatistical techniques 
clearly have the potential to: (1), provide better field 
characterization than that obtainable from more 
conventional spatial interpolation methods; (2), improve 
plot layout, thereby increasing the level of experimental 
precision; and (3), increase the power of post-hoe statistical 
techniques which are used to correct spatial autocorrelation 
problems. 

The term geostatistics refers to a group of spatial 
interpolation techniques developed from theoretical work 
on regionalized variables by Matheron (1963) and his 
colleagues. Although originally intended for use in the 
mining industry, these techniques are increasingly being 
used in a wide variety of applications. Kriging, a form of 
weighted local averaging, is an attractive geostatistical 
method because, unlike all other spatial interpolation 

' techniques, it provides an unbiased estimate with minimum 
and known variance (Lam, 1983). 

The kriging procedure uses weights that are 
determined from a semi-variogram--i.e., a function that 
describes how a given biophysical property varies over the 
landscape. The semi-variogram shows how the variance of 
a property changes as a function of both the distance and 
direction between any two points. By calculating 
semi-variances over a range of distances or lags, an 
experimental semi-vafiogram can be produced. The 
semi-variance for a particular lag, .h, is given by: 

1 a,tCh) 
?(h)  = v" { z(x,)  - z(x~+ h) }2 

2 M ( h )  7.t 

where M (h) is the number of paired comparisons at that 
lag, and z(x,)  and z(x~+ h) are the observed values at 
points x~ and x~+ h, respectively (Oliver and Webster, 
1990). , 

The experimental semi-variogram is usually 
modeled by fitting one of a group of authorized models to it 
(e.g., linear, spherical, or exponential). Three terms are 
generally used to describe specific features of the 
semi-variogram model: the m~gget, or y-intercept, provides 
an estimate of the amount of "white noise" present--i.e., 
error resulting from measurement errors and from spatial 
variation that occurs over distances much shorter than the 
shortest lag interval; the range marks the limit of spatial 
dependency; and the sill is the upper bound where the 
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semi-variance reaches its maximum value (over the sill, 
observations are spatially independent). 

The kTiging variance or prediction error of a block 
estimate is given by: 

n 

8 ' ( B )  = E 
t , ,  l 

X t "y(xrB ) + ql - f ( B , B )  

where ~'t is the coefficient or kriging weight, (x,, B) is the 
average semi-variance between all points within the block 
and the ith sampling point, ~ is a Lagrange multiplier to 
minimize the kriging variance, and ( B , B )  is the average 
within-block variance. Kriging variance depends on the 
form of the semi-variogram, the size of the block to be 
estimated, and the configuration of the sampling points with 
respect to the block (Burrough, 1991). More importantly, 
prediction error does not depend directly on the actual 
values of the observation points. This is highly significant 
because it" the spatial variability of a parameter can be 
described in the form of a semi-variogram, and what block 
size to estimate can be determined, then the kriging 
variance associated with various sampling strategies can be 
calculated. This makes it possible for a researcher to 
choose an optimal sampling strategy in advance--i.e., a plot 
of sampling fi'equency versus kriging variance or prediction 
error can be produced (Burgess and Webster, 1980; 
Burgess et al., 1981; Oliver and Webster, 1991). This 
technique was used to select an optimal sampling strategy 
for characterization of soil spatial variability, at the 
experimental field site. 

METHOD 

Before semi-vafiograms of the soil parameters 
were produced, various descriptive statistics (e.g., 
histogram and probability plots; skewness and kurtosis) 
were calculated to check for outliers and to determine the 
distribution of each data set. The data were transformed to 
a normal distribution if their statistics indicated that the 
distribution was highly skewed. 

The GEO-EAS (version 1.2.1) geostatistical 
so~vare package (Englund and Sparks, 1988) was used to 
estimate the soil semi-variograms. An important 
prerequisite to production of the nondirectional (360 
degree) semi-variograms was determination of an 
appropriate lag interval. A number of "rules-of-thumb" 
were followed in order to an'ive at this decision: (1), the lag 
interval should result in 6-10 points on the semi-variogram; 
(2), the lag interval should result in at least 20 paired 
comparisons for the first lag, and approximately 100 
comparisons for the remaining lags; and (3), the length of 
the lag interval should be approximately equal to 1/2 the 
maximum field site dimension divided by the number of 

points or lags. Keeping these guidelines in mind, test 
semi-variograms were produced at every 2.5 m interval 
from 35 m to 55 m. A lag interval of 52.5 m was found to 
produce semi-variograms with characteristics that closely 
matched the "rules-of-thumb" criteria, and was thus used to 
produce the nondirectional soil semi-variograms. 

The GEOPACK (version 1.0) geostatistical 
software package (Yates and Yates, 1990) was used to 
model the experimental soil semi-variograms. Linear, 
spherical, and exponential models were fit to the 
semi-variograms using a non-linear least-squares procedure 
(Marquardt, 1963). The Akaike Information Criterion 
(AIC), a goodness-of-fit statistic, was determined for each 
model (Webster and McBratney, 1989). The model having 
the lowest AIC value--i.e., the "best" fit--was then 
cross-validated in order to reduce the mean and variance to 
0 and 1, respectively. Results from the cross-validation 
procedure were considered to be the best description of the 
nondirectional experimental semi-variogram. 

A final procedural step was performed in order to 
detem~'ae if direction, as well as distance, had a significant 
influence on spatial correlation. Four directional 
variograms (0, 45, 90, and 135 degrees) were produced for 
each soil parameter. By superimposing the nondirectional 
model over each directional semi-variogram, it was possible 
to tell if there was a strong directional component to the 
spatial correlation--i.e., was it anisotropic. Most of the 
semivafiograms from the initial soil survey showed a 
marked degree of spatial dependence. The form of these 
relationships was generally isotropic and was best fit by 
~herical models. Experimental semi-variograms of four of 
the more significant soil parameters are shown below. 

P 
t 2 .  

"§ 4 
c~ 

8 .  
B 

'J m'  • 

xs~,. ze~. 2 ~ .  
Dis tance  (m) 

Figure 1. Depth of A horizon semi-variogram. 
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Figure 2. pH semi-variogram. 
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Figure 3. Phosphorus semi-variogram. 
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Figure 4 Magnesium semi-variogram. 

Once the experimental soil semi-variogn'am 
models were estimated, it was possible to determine an 
optimal sampling scheme for future soil characterization. 
This was accomplished using OSSFIM version CG+2 
(McBratney and Webster, 1981). OSSFIM requires input 
of the semi-variogram model type, nugget, range, sill, 

anisotropy ratio, and block size in order to produce a plot of 
grid sample spacing vs. kriging variance. This plot was 
then used to determine what sampling intensity was 
required to achieve a particular degree of kriging variance 
or prediction error. Table 1 shows what sampling 
frequencies are required to obtain soil data at a level of 
precision high enough to allow for separation of the class 
means. 

Table 1. Grid spacing required to achieve desired 
level of precision. 

Soil Parameter 

A Horizon Depth (cm) 

pH (cmolH) 
. . . . . .  

Phosphorus (kg/ha) 

Magnesium (meq/100g) 
,, 

Std. Error 

1.0 

0.1 

17.0 

0.1 

Grid 
Spacing 

(m) 
, 

23 

12 

12 

26 

CONCLUDING REMARKS 

The design and layout of the experimental field 
plots at BARC has doubly benefited from the use of 
geostatistical techniques. By determining the spatial 
variability of potential crop yield, kriging will be used to 
help minimize the impact of location effects on treatment 
comparisons, and thus increase the power to detect true 
treatment differences. Moreover, geostatistical techniques 
have been used to design optimal sampling schemes for 
fu~e  data collection. This application was very relevant to 
our research because the expense associated with 
conducting long-term agaicultural experiments makes it 
incumbent to obtain at least some level of assurance that the 
data used to establish field trials is precise enough for its 
intended purpose. 

This investigation has shown that the kriging ' 
variance of the data collected using the 1993 sample grid 
(50 m x 75 m) was too high to allow for separation of the 
class means. To remedy this problem, a second soil 
characterization was performed in April 1994 using a 25 m 
x 25 m sample grid. Although Table 1 shows that both pH 
and phosphorus require a finer resolution sample grid, 
sampling at this frequency (12 m) was deemed to be 
prohibitively expensive; especially since these soil 
properties were felt to be less important predictors of crop 
yield than was depth of the A horizon. 

Unlbrtunately, using geostatistical techniques to 
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design optimal sampling schemes is hindered by one 
significant limitation: belbre an appropriate sampling 
scheme can be determined, the parameter's semi-variogram 
must be lmown; yet, estimation of this semi-variogram itself 
requires some sampling. This Catch-22 may not be a 
problem if the spatial behavior of the parameter is well 
known, or the costs associated with conducting a limited, 
exploratory survey in order to determine the 
semi-variogram are small compared to the costs of a full 
survey where the quality of the data collected is not 
explicitly known. 
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