
SAMPLE MODELS AND WEIGHTS 

C. J. Skinner, University of Southampton 
Dept of Social Statistics, University of Southampton, Southampton S017 1BJ UK 

Key Words: Regression, Selection, sampling design. A practical 
Weight motivation is that many survey data 

analysts start from a modelling 
1. Introduction approach using standard software and 

it seems desirable to develop means 
The question of how to take of taking account of sampling designs 

account of the sampling design when which adapt this approach naturally. 
modelling sample survey data has The broad approach will be to fit 
received considerable attention in 'sample models' to sample data and 
the literature (see e.g. Skinner et then to combine these to make 
al, 1989). Most of this discussion inference about population models. 
assumes that the model or parameter To provide a specific focus, we 
of interest is 'prespecified' and concentrate on the case of regression 
attention is restricted to the issue modelling. 
of how to take account of the 
sampling design in the process of Before particularising further, 
statistical inference, we outline the general perspective 

upon which this paper is based. 
To assume a particular First, it is taken for granted that 

specification for the model, for in statistical modelling, the 
example an additive one, before even parameter of interest is a 
looking at the data, closes off the characteristic of the (super) 
possibility of discovering population model and not of the 
alternative models, for example finite population. Second, although 
multiplicative ones. In contrast the it is also taken for granted that 
practice of modern statistical 'all models are wrong', the model 
modelling usually operates through an building process will by its nature 
iterative process of tentative model proceed by assuming certain models 
specification and model checking, are true until model checking implies 
The latter may employ both formal otherwise. Third, we shall primarily 
statistical tests and informal be concerned with the possible bias 
graphical methods. While procedures effects of a complex sampling design 
for formal tests, for example for the arising from informative/outcome 
presence of a quadratic term or an dependent sampling (eg Hoem, 1989; 
interaction, under complex sampling Pfeffermann, 1993). Our approach 
designs are well established, might be viewed as an alternative to 
graphical methods are much less two existing approaches" the use of 
developed. One reason for this is conventional weighting, and the use 
that sampling designs with unequal of model-based adjustment based on 
selection probabilities can population information (Holt et al, 
arbitrarily distort graphical 1980). We suggest that both these 
displays, approaches suffer the limitations 

that they depend on the 
The aim of this paper is to prespecification of population 

develop an approach in which such models. In addition, we suggest that 
model building methods can be applied conventional weighting does not 
to data arising from a complex naturally conform with standard 
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model-building practice and may lead fp(y]x) or some parameter which helps 
to inefficient estimation. 
Furthermore, the adjustment methods to characterise the model. This 

model defines the distribution of an 
of Holt et al (1980) require individual Y unconditional on all 
population information which may not i 
be readily available on a survey data other Y. for j ~ i and thus might be 

J 
file. termed a 'marginal regression model' 

Let us turn then to regression following, for example, Liang et al 
modelling. We conceive of a (1992). The outcomes Y.~ and Y.j for i 
regression model as representing the ~ j may be dependent but it will be 
conditional distribution of a important to assume that any such 
response variable y given a vector of dependence is not an object of 
covariates x. More precisely, interest and may be treated as a 
randomly index the units i=l,...,N in nuisance. This assumption seems to 
a finite population P (Rubin, 1987, accord with most uses of regression 
p.27) and let (Yi, Xi) be the pair of models for sample survey data. It is 
values of (y,x) associated with unit also implicit in most previous 

approaches, such as those of Kish and 
i. Suppose the  (Yi, Xi) are outcomes Frankel (1974) and Fuller (1975) 
of random vectors and denote the mentioned earlier and 
marginal distribution of each of pseudolikelihood methods (Skinner et 

• these by f(y,x). The subscript P al, 1989). 

emphasises that f is the population 2. A General Approach 
model and the fact that the marginal 
distribution are common follows from Let s denote the sample selected 
the random indexing (Rubin, 1987, from P according to a sampling design 
p.32). The conditional distribution which assigns a probability p(~) to 
fp(ylx) defines the regression model the members "ff of a set S of subsets 
of interest. A conventional approach of P. The sample design, 
to the initial specification of characterised by the values (p(~'); s" 
f (y ]x )  for the simplest case of ~ g), will be denoted p(.). The 

inclusion probability ~. of unit i 
scalar x would involve the inspection 
of a scatter plot of Yi versus x for P is defined as usual by summing p(s') 

i across samples ~ which contain i. We 
sample units i. A problem with this allow for the possibility that p(.) 
approach for sample survey data is represents both unit nonresponse as 
that sampling designs can arbitrarily well as deliberate sampling, so long 
distort the pattern in a scatterplot as it can be assumed that the ~., i 
and thus distort the specification of 1 

a model. All that can be fitted to s, are known. 

the sample data is a sample model Suppose the data available to 
f(ylx) and there is no reason in the analyst consist of the values 
general for this to be the same as (Yi,Xi,Wi) for units i in the sample 
the population model of interest. 

s together with whatever 'sampling 
In order to address this problem information' - stratum and primary 

we first refine our objectives. Note sampling unit identification for 
first that we have taken the object example - is needed for variance 
of inference to be either the model estimation. The weights w. are taken 

1 

to be reciprocals of the inclusion 
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probabilities ~. • w. = ~?~ . For file that the weight w. is 'just 
1 1 1 1 

simplicity, we assume no item like' any other variable. 
nonresponse on Yi and x.. 

' The matrix, D can often be 
P 

= = naturally defined in terms of stratum 
Let z (Yi,Xi) and Zp identifiers and so forth. But for 

(z~,...,zr~)', where x. is a row , our purposes the introduction of D p 
vector and P={ 1,...,N}. Let the is unnecessary and it is sufficient 
population model be the random to view Z and p(.) as joint outcomes 
process which generates Z as an p 

P of a random process. The sample s outcome (with P held fixed). This and sample data Z are then generated model cannot be 'built' empirically 
since we do not observe values of z. in two stages: 

1 

for all i~P. Instead let Z be the 1. Zpand p( . )a re  generated; 

observed submatrix of Z obtained by 
P 2. letting S be the random set taking selecting those rows in Z 

P values "s~g with probabilities p(s'), s 
corresponding to units in s. We is generated as an outcome of S, and 
should like to define the sample Z is determined from Z and s. 
model as the random process, induced ~ P 
by the population model, which 
generates Z .  However, to do this we The marginal population model 

S 

also need to define how sample (or distribution) f(zi) for any unit 
designs p(.) are jointly determined i is obtained simply by marginalising 
under the process that determines Zp. the distribution of Zp. Conditioning 

In other words we need to define the o n  x i gives the model  f(Yi]Xi) as 
joint distribution of p(.) and Zp. before. One possible definition of 
One device, employed by some authors the sample model might then be the 
(eg Scott, 1977; Rubin, 1987, Chapter conditional distribution of Z given 
2), is to suppose that p(.) is a s. In this case we may state, in 
deterministic function of an Nxq analogous terminology to that of 
matrix D e of 'design variables' Rubin (1985), that p(.) provides an 
(which may overlap with Zp) and then 'adequate summary' of the design in 

the sense that each z. is 
write p(.) = p(.lDp). The joint 1 

conditionally independent of S given 
distribution of p(.) and Zp is then p(.). This follows since we may 
determined by the joint distribution write 
of Z and D .  The idea that the 

p e Pr(S=slZ e, p(.)) = p(s). 
probability sampling design p(.) is 
itself the outcome of a random 
process may seem conceptually For some designs, p(s) is 
elaborate, but it does usefully imply characterised by the weights w and 
that the nl and hence the w.1 are these therefore provide an adequate 
random and possibly correlated with summary (Rubin, 1985). Smith (1988) 
the z.. This corresponds to the suggests, however, that such designs 

1 are unusual and that an adequate 
practical observation from the data summary usually requires augmenting 
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the w. by further design information. Given our definition and focus 
1 

We suggest that this is unnecessary on the marginal distribution of z.~ we 
if the sample model is defined may overcome the problem raised by 
differently. Smith (1988). Note first that since 

For motivation, consider the 
sample cumulative distribution of y: 

N N 
G(y) = Z I i ~(Yi < y) / 2; I i 

i = l  i= l  

the weight w. may be viewed just as 
1 

any other variable we may write, by 
extension of (2.1)" 

f ( z i ,w i )  = f ( z  i, willi=l). 

where I is the sample indicator The following result shows that" the 
i weights w. provide an adequate 

function such that I.=1 if ies  and summary of the design if one is 
I.---0 otherwise and 5(.) is the interested only in the marginal 

1 

indicator function such that 5(A)=l model. 
if A is true and 5(A)---0 otherwise. 

Proposition 1 

Randomly indexing units as The conditional sample and population 
before, the Ii~(yi<y) have a common distributions of z., given w.~ are 

marginal distribution, equal to 1 identical: 
with probability xPr(Yi<y ) [ Ii= 1), 
where x=E(I.), and 0 otherwise. It f(zi[wi) = f(zi[wi) 

1 

follows, under an appropriate law of Corollary 1 
large numbers, that G(y) -~ 
Pr(Yi<Yll=l). Such a result may be The same is true for the conditional 
generaliseM to other symmetric distribution of Yi given x 

functions of the sample observations, f(Yi] f(Yil 
For analyses based on estimators o f  xi 'wi)  = Xi'Wi) 
this form, the sample observations 
may therefore be treated as The implication of Corollary 1 
exchangeable outcomes, each with is that we may fit a regression model 
marginal distribution to the sample data with Yi as the 

response and both x. and w. as 
1 1 

f(zi) = f(zi lI i=l)  (2.1) covariates and, subject to the 
limitations of model fitting, may 

and consistent estimates of this treat the characteristics of the 
distribution may be obtained directly fitted marginal model as 
from the sample. We take f(z.) as corresponding to the marginal 

$ 1 

our definition of the marginal sample population model. 
model. This contrasts with the 
earlier definition considered, of the We suggest that the process of 
conditional distribution of Z given model fitting follow conventional 

(model-based) procedures in 
s. This would have implied a regression. The possible dependence 
marginal distribution for z of between different units in the sample 

model may reflect either dependence 
fp(Z i IS) = f ( z  i ]I1,...,IN). in the population model or dependence 

induced by selection. It does not 
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matter which from the point of view If the null hypothesis is 
of interpretation if only the accepted then one might proceed to 
marginal model is of interest, fit a regression model of y on x 
Methods of taking account of such ignoring the weights. The possible 
dependence in statistical inference impact of the pre-test procedure on 
might, for example, include Taylor subsequent inference (see eg Bancroft 
series or resampling methods as in and Han 1977) seems worthy of 
pseudo likelihood methods (eg. exploration but will not be pursued 
Binder, 1989; Skinner et al, 1989). here. 

Let us assume then that we can If the null hypothesis is 
made adequate inference about rejected then it is recommended that 
f (y[x ,w)  or about some parametric the analyst consider whether there 
characteristics of this model. Now are not other covariates, which have 

been used in the sampling design or if it turns out that f(ylx,w) is 
might affect nonresponse and which 

free of w, that is could be included in the model to 
remove any conditional dependence of 

f(ylx,w) = f (y lx)  (2.2) y on w given x. In this way, the 
weights provide a diagnostic aid for 

then we are finished, since f (y lx)  choosing an appropriate model, as 
is precisely the model of interest, suggested by DuMouchel and Duncan 
Given the uncertainty in model (1983). This approach can be 
fitting we shall not be able to judge practically useful in encouraging the 

analyst to think about alternative that (2.2) holds with certainty, 
however. Rather we may test the 
hypothesis that (2.2) holds within a 
fitted family of models. For 
example, if the model fitting 
indicates that the parametric family 
of models 

Y I x, w -  N(a + x]3 + wT, 0 "2) 

provides an adequate fit to 

models. 

Suppose then that, even after 
consideration of alternative choices 
of covariates x, there is still 
evidence that y depends on w as well 
as x. How can we get from the fitted 
model f(ylx,w) = f(ylx,w) to the 

model f (y lx)  of interest? 

f (ylx ,w) then we may test the The two models are related by: 

hypothesis that 7=0 using a t (or I" 
f ( y l x )  fp(YlX,W) f(w I x)dw (2.3) F) test. Or if a + x13 + w7 is J 

augmented by an interaction term wxk 
then an F test of H:y=0, ~,- -0  which suggests that we need to fit 
corresponds to the approach of the model f (wlx) .  In general 
DuMouchel and Duncan (1983) for 
deciding whether to use a weighted or f (w[x )  # f (w[x)  and so we cannot 
unweighted estimator (see also simply fit a further regression model 
Fuller, 1984). Under the null to the sample data for w on x to 
hypothesis that y=0, ~,--~ both F obtain f (w[x) .  Instead we use the 
tests would have the same size but 
would have different powers. Results following results. 
of Das Gupta and Perlman (1974) 
indicate that neither test will be 
uniformly most powerful. 
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Proposition 2 clear how parameters of the fitted 
The population distribution of w. is f (ylx,w) and f (w Ix) models can be 

1 

obtained by weighting the sample 
distribution 

f ( w i )  = W i f ( w i )  / E(w) 

where E,(w) = f w f(w) dw 

Corollary 2 

The same is true conditional on x: 

fp(w ilxi) = w i f ( w  i [xi) / E s(w I xi) 

combined in a simple and 
interpretable way. Secondly, 
practical inference procedures for 
point estimation, variance estimation 
and so forth, need to be developed. 
We suggest how this general approach 
may be implemented under some 
specific conditions in the next 
section. 

3. A Specific Approach based on a 
Log-linear Regression Model for the 
Weights 

where E (w Ix i) = f w f (w [Xi) d w  In this section we consider 
representing f (w[x)  as a log-linear 

It follows from (2.3) and regression model" 
Corollary 2 that a general approach 
to fitting the model f (y [x )  is log W i = X i ~ + E i (3.1) 

obtained from the following four 
There are two particular reasons 

steps: for the log transformation. 

1. fit the regression model of y on 
x and w, f ( y [ x , w ) [ =  f(y[x,w)],  to (a) We shall see that the effect of 

weighting in step 3 of Section 2 is 
the sample data; particularly simple if the sample 

model is of form (3.1), provided the 
2. fit the regression model distribution of E i is free of X i. 

f(wilx i) to the sample data; (b) Often the inclusion probability 
~. can be expressed as a product of 

1 

3. weight this model to obtain terms, each of which may depend on 
f ( w l x )  as in Corollary 2; different x factors. For example, we 

may have /I; i = /gii 792i ~3i' where ~li 
4. combine the fitted models is the probability of selecting the 
f(ylx,w) and f(wlx) via (2.3). primary sampling unit (PSU) which 

contains i and may depend on 
This approach is very general, area-level factors, /g2i is the 

applying to parametric, probability of selecting individual i 
semiparametric or nonparametric given that the PSU is selected and 
regression models, to linear or this may depend on the number of 
nonlinear models and to continuous or households at the dwelling within 
discrete y. However, it clearly which the individual lives and 
requires fleshing out in at least two 3i 
respects. First, in regression may be the probability of individual 

i responding which may depend on modelling it is often desirable to 
have only a few parameters to other covariates. By taking log w i 
represent the model and it is not or equivalently -log ~. we may 

1 
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reasonably expect the x factors to Ep(y[x,w ) = (ot+13x)(l+X log w) (3.5) 
enter equation (3.1) in an additive 

way. for scalar x and that the model 
fitted at step 2 is 

To elaborate upon reason (a), 
let u = exp(e) and suppose that the 

of u in log w =~'0 + x ~/1 + e probability density function 
the sample is f'(u), which does not 

s Then from (3.3) and (3.5) the 
depend on x. The distribution of u combined model obtained at step 4 is 
in the population after weighting may 
be shown to be Ep(ylx) = (0c + 13x) [l+X('fo+XYl+k)] 

~v(ulx) = u ~(u) / E ( u ) .  (3.2) = E (YlX) + k X(oc + 13x). 

Hence it does not depend on x The example above assumes that w 
and the effect of weighting is simply only appears as log w in the 
to change the distribution of e. = expression for E (ylx,w). This will 

1 p 

log(u.) in (3.1) according to (3.2). 
1 

In particular we may write 

Ev(log w lx ) = Es(log w lx)+k. (3.3) 

where 

= Ep(£)-Es(£  ) 

= E [e exp(e)]/E [exp(E)] - E (e). 
S 8 S 

A 

lead to the simplest possible 
expressions for E (ylx), but clearly p 
is a restrictive requirement. A 
broader class of models may be 
represented by a polynomial mean 
function 

J 

Ep(ylx,w ) = X b s(x)w j. 
j=0  j 

In this case we may use the result 
If ~, is the least squares e~imate of that 
~, and e. = log w. - x. ?, the ith 

1 1 1 Ep( iw' 
residual, then k may be estimated by Ix) = Es(wi+l I x) / Es(Wlx) 

^ and in particular 
k = Z e. exp(e.) / X exp(e.). (3.4) 

S I I S I 

This estimator does not depend 
on any distributional assumption 
about e.. Note that, as usual in 

1 

least squares estimation, X e. = 0 so 
A s 1 

E (wlx) = E (w2lx) / E (wlx) 
p s s 

= [ l + c . v 2 ( w l x ) ]  E(wlx). 

where c.v(wlx) is the coefficient of 
variation of w given x. Now under 

that k implicitly estimates E(e)  to model (3.1). 
S 

be zero. c.v(wlx) = c.v(exp(e) lx) 

To illustrate the impact of this which is constant if the distribution 
adjustment suppose first that the of e is free of x. Hence the mean 
fitted regression mean model at step function of w on x is simply 
1 is multiplied by a constant under 

weighting. 
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For general j we obtain 

Ep(WilX) = exp[(j+llxT] 

E (u j+l) / exp(xT) E (u) 
$ $ 

= exp[jxT] E (u j+I)/E s(u)  

which may be estimated by 
A 

e×p[jxT] i ~ exp[(j+ 1)ei]/i :~. e×p(ei). 

4) Substitute into the function 
fitted in (1). 

This approach results in a single 
(point) estimate of the regression 
function Ep(y I x ) . Variance 

estimators of parameters, or of the 
value of the regression function at a 
given x, may be obtained for example 
by replication methods (eg Wolter, 
1985). 

(3.6) 4. Example 1 -  A Simple Simulation 

Let us summarise then the nature Study 
of steps (1) - (4) of Section 2 for To illustrate the properties of 
our simplified approach to modelling the proposed procedure in a simple 
the mean function Ep(yix ), setting, 'population' values (xi,wi), 

1) Fit a regression model i= 1,...,N= 1000 were generated 
independently from the model 

E (ylx,w) = I.t (x,w) x . -  W(0,1) 
1 

to the sample data (Yi' x., w.), 
' ' log w.= l+3x.+e., e.~ U(-1,1). (4.1) i~ s. Check whether dependence on , , , 

w can be avoided by suitable 
choice of x. If not, represent where U(a,b) denotes the uniform 
dependence of I.t(x,w) on w distribution on the interval [a.b]. 

preferably in terms of logw 

I.t (x,w) = b (x) + b (x) logw 
0 1 

or otherwise in terms of a 
polynomial 

Sample indicator values I. were then 
1 

generated indep.~ndently such that 
Pr(I.=l) = w. .  For sample units 

1 1 

(Ii=l), values Yi were then generated 

independently from 

J y. = x.+log w.+8., [i. ~ N(0,1).(4.2) 
= X b . ( x )  w j ' ' ' 

sj 
j =0 It follows from (4.1) and (4.2) 

2) Check whether the log-linear model that the population model relating Yi 
assumption in (3.1) is adequate, and x. is y. = 1 + 4 x. + (ei+Si) 
If so, fit the model to the ' ~ 

and from (3.3) that the sample model 
sample data (w i, xi), i~s, using is y. = k + 4 x. + u., where k is 
least squares estimation. ' ' ' 

some constant, u. is independent of 
1 

3) Either estimate Ev(logwlx ) using x. and E(u . )=  0. 
A 1 1 

the additive adjustment + k in 
(3.3) and (3..4) or estimate the We consider, three estimators of 
required Ep(W'lX) using (3.6) the coefficients ot and 13 of the 

linear population regression model 

140 



Ep(Ylx) = ~ + ~x" where the weight has no significant 
effect. If this proves impossible, 
an alternative approach to 

a) ordinary least squares (OLS); conventional weighting has been 

b) weighted least squares (WLS) with presented. This involves the fitting 
of two regression models: one, where 

weights wi; the weight is a covariate and one 
where the weight is the dependent 

c) the procedure proposed in Section variable. A principal advantage of 
3 involving (1)the fitting of this approach is that only 'sample 
E(Ylx,w) = 0 ° + 0 x  + 03 log w, (2) models' need to be specified to fit 

to sample data. This may make use of 
the fitting of ôE (log^ w lx)̂  =̂  ~/~ +~ ~2 conventional iterative model-building 
x, (3) setting cz = ~  + 03(~l+k), 13 = methods. In contrast the 
^ ^ ^ conventional weighting approach 
01 + 03 ~2' where k is obtained from requires the population model to be 
(3.4). prespecified. A further advantage is 

a gain in efficiency. 
The procedure was repeated 1000 
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Table 1 

Estimation 
procedure 

Bias 

Parameter estimated 

Variance MSE Bias Variance MSE 

OLS -0.312 0.023 0.120 -0 .005  0.179 0.179 

WLS 

Proposed 

0.017 0.054' 

-0.005 0.027 

0.055 -0.073 0.383 

0.027 -0 .005  0.179 

0.388 

0.179 
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