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1. Introduction 

Classical sampling theory concerns 
inferences for finite population parameters, e.g., 
the mean of all the values of a variable Y over 
the units in the target population. Stochastic 
models for Y, also known as superpopulation 
models (Deming and Stephan, 1941), have been 
used extensively to evaluate  designs and 
estimators (Cochran, 1946; Hartley and Sielken, 
1975; Cassel, Sarndal and Wretman 1977, ch 4- 
6), to incorporate measurement error (Sarndal, 
Swensson and Wretman 1992, ch 16), and to 
handle missing data (Little and Rubin 1987, ch 
12). The parameters of the stochastic models 
themselves, however, are probably of more 
interest than the finite-population parameters for 
studies involving questions of science (as opposed 
to administrative or quality assurance 
applications). Cochran (1977, p 39) and Yates 
(1981, p 178) suggest that in comparing two 
domain means with simple random sampling 
that the finite-population correction factors 
should be ignored, since interest will usually be 
in the superpopulation means. This advice is 
easy to justify; see below. 

In this note we investigate variance 
estimation for superpopulation parameters under 
some more general without-replacement 
sampling designs. In particular, we ask whether 
it is appropriate to use with-replacement 
variance estimators that ignore finite-population 
correction factors for these more general designs. 
We find that for two-stage sampling with simple 
random sampling (without replacement) at the 
first stage, the with-replacement variance 
estimator is appropriate. For stratified simple 
random sampling at the first stage, however, an 
adjustment to the with-replacement variance 
estimator is required. For probability- 
proportional-to-size (pps) sampling from within 

strata, the with-replacement estimator is not 
easily modified to achieve consistent estimation 
of the superpopulation variance. In this 
situation, a modification of the without- 
replacement variance estimator is given, and an 
ad hoc modification of the with-replacement 
estimator is given for cases in which the joint 
inclusion probabilities are not known to the 
analyst. 

We restrict attention to variance 
estimation of the superpopulation mean in the 
next section, and consider other parameters in 
the Discussion. 

2. Superpopulation models and variance 
estimators for the mean 

For the cases that follow, the finite- 
population mean is always defined as the simple 
mean of all the observations in the realized finite 
population. The definition of the super- 
population mean depends upon the assumed 
superpopulation model. The superpopulation 
mean will not depend upon the realized finite 
population or the realized sample from the finite 
population, unlike Potthoff et al. (1992); see also 
Kott (1993). Expectations and variances of 
sampled quantities are to be interpreted as 
including the randomness from both the 
generation of the finite population (using the 
superpopulation model) and the sampling of the 
finite population. When we refer to the 
"repeated sampling variance" of a statistic we 
mean the variance of that statistic over repeated 
independent samples from a fixed finite 
population. Derivations use standard con- 
ditioning and Taylor series arguments and are 
omitted. 

Case 1" Simple random samDlin~ without 
replacement. The finite population consists of 
YI'  "'" YK which are assumed to be 
independent, with Yi being a realization of a 
random variable with mean #i and variance ~2. 

1 
The (Pi' or2) are assumed to be independent and 
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identically distributed from a distribution F(#, 
cr2). The superpopulation mean is defined as 
#sp=E(#) .  Let Yl' "'" Yk be the sampled 
values, and y be the sample mean. An unbiased 
estimator of the repeated-sampling variance of y 
is given by 

k 
V&rwor(Y ) _ (l-f) 1 Z (Yi-y)2 

k k-1.  
1-1 

where (1-f)=(K-k)/K is the finite-population 
correction factor. If the finite-population 
correction factor is set to 1, then one obtains the 
repeated-sampling formula that would have been 
used if the sampling had actually been simple 
random sampling with replacement: 

k 
1 1 ;~1 (Yi-y)2 varwr(Y) - k k-1 . 

~ AL 

Using the superpopulation model, we have 

Vat(y) - E{varwr(Y)} - [E(~ 2) + V a r ( g ) l / k ,  

and 

E{vhrwor(Y ) } - (l-f) [E(cr 2) + Var(v) ] / k .  

confirming the advice to ignore the finite- 
population correction factor for superpopulation 
inference; see also Fuller (1975). 

Case 2: Two-stage cluster sampling using 
simple random sampling without replacement. 
For cluster i, we assume that the population 
values Yil '  Yi2' "'" YiN are independent and 
identically distributed r~ndom variables with 

and variance ~r~". The population is mean #i 
composed of K clusters, where the (Ni, #i' crz! 

1 

are independent and identically dmtributed 
random variables with trivariate distribution 
F(N, #, ~r2). The superpopulation mean is 
defined as #Sp= E(N#) / E(N). At the first 
stage of sampling, a simple random sample 
without replacement of k clusters is selected. At 
the second stage of sampling, a simple random 
sample without replacement of size ni=g(Ni) is 
selected. For example, n i - n  represents equal 
cluster sample sizes, or n i - ~ N i represents a 
self-weighting design. 

As an estimator of #SP' we consider the 
weighted mean 

k k 
Y -  (~ Z NiYi) / (1 Z Ni) 

1:1 I :1  
where Yi is the mean of the n i sampled 

observations in the ith sampled cluster. As this 
is a ratio estimator, the Taylor series linear- 
ization estimator of its repeated-sampling 
variance is given by (Cochran 1977, p 305): 

V&rwor(Y ) - 

fl'~-"k/--, 1-f2i)N2 s 2 i / h i  (1-f 1) s 2 + ( 
1=1 

k 
k (1 Z Ni)2 

1-1 

where s 2 = ~--f. Ni (Yi - y)2' 
1:1 

n i 
s 2 -  1 K" 2 2 i - n - ~ j ~  (Yij-Yi) ' and the finite-population 

correction factors are (1-f l )-(K-k)/K and 
(i-f~i) - (Ni-ni)/N i. The variance estimator 
setting the correction factor fl equal to zero 
corresponds to the estimator that would have 
been used if the sampling had actually been 
simple random sampling with replacement: 

V&rwr(Y ) - 
2 

s 1 
k 

k (1 ~ Ni)2 
i=1 

Since none of these estimators are unbiased, we 
consider the asymptotic case as k ,K~oc and the 
sampling fraction k/K--*7. Under the super- 
population model we 'have 

lim kVar(y)  = lim k E ( v h r w r ( Y  ) )  
k~c¢  k~c¢  

1 [ N2a 2 
E(N) 2 E(g(N)) + E(N2# 2) 

+ 
E(N#)2E(N 2) 

E(N) 2 

but, 

lim k E ( V~rwor(Y ) ) = 
k----~c<~ 

1 [ N2a 2 
E(N) 2 E(g(N)) 

-+- (1-7) E(N2# 2) + (1-7) E(N#)2E(N2) 
E(N) 2 
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_ 2(I_7)E(Np)E(N2#) 
E(N) 

-TE(Ne t2 )  ] • 

Therefore, we see that ignoring the finite- 
population correction factors yields an 
asymptotically unbiased variance estimator. 
The asymptotic bias of Vgrwor(Y), which is the 
estimator that would typically be used, can be 
non-negligible. For example, suppose the cluster 
sizes and cluster means are (Ni, tti) - (10, 1) or 

(20, 2) with probability 1/2, and cr 2 - 1  and 

n i - 5 .  Then its relative asymptotic bias is 

59.447/94.44 equaling 1%, 6%, or 16% for 
sampling fractions 1%, 10%, or 25% respectively. 

The stated superpopulation model for this 
case did not include measurement error as in 
Case 1. This is easily incorporated into the 
model (Yij has mean #ij and variance trij2 , etc.) 

and the asymptotic unbiasedness of Vgrwr(Y ) 
still holds. We note also in passing that the 
Horvitz-Thompson estimator of the mean, 

k K 
Y H T -  (1 E NiYi) / ( 1  E Ni) ' is a 

i= l  i= l  
possible estimator of the superpopulation mean 
when the N i are known for all the clusters in the 
population. The results described above do not 
apply to this estimator and its usual (repeated 
sampling) variance estimators. In particular, 
the variance estimators that both have, and do 
not have, the finite-population correction factors 
are asymptotically biased, with the sign of the 
bias depending upon the distribution F(N,p,cr2). 

Case 3: Stratified simple random sampling 
without replacement. The population (and 
superpopulation) is composed of L disjoint 
strata. In stratum h, let Yhl '  "'" YhK h be 

independent and identically distributed random 
variables with mean #h and variance a~,. Unlike 
Case 2, we assume that these means and 

l . l  

variances are fixed and not random since they 
are corresponding to strata and not clusters. 
The numbers of observations in the finite 
population falling into the different strata are 
assumed to be random. In particular, we 
assume that (K1, ..., KL) has a multinominal 
distribution with sample size K and proportions 
(Trl, ..., lrL). Thev_.,superpopulation mean is 
defined as #SP = 2.., 7rhPh" From stratum h, 
kh=Ch(Kh) observations are sampled as a simple 
random sample without replacement: Yhl' Yh2' 

..., Yhk h. The functions c h can depend upon h 

since we may wish to utilize different sampling 
rates depending upon prior, knowledge of 
stratum characteristics, e.g., a~l" Let 

L 
Y -  E K h Y h / K  

h = l  

be the stratified mean, where Yh is the mean of 
the sampled observations in stratum h. The 
repeated-sampling variance estimator, ignoring 
the finite-population correction factors, is given 
by 

L K~ 1 s ~ (1) 
V~rwr(Y) .--. K2 kh h = l  

w h e r e  

k h 

1 E (Yhi-  Yh )2 
kh-1 i=1 

Using the superpopulation model, we have 

_ 1 L 
Var(y) K 2 E a ~ E (  Kh2 ) + A s t  and 

h = l  Ch(Kh) 

L 
1 E a2 E( Kh2 

E{v~rwr(Y)}-  K2 ) 
h = l  Ch(Kh) 

L L 
1 2 _ 

w h e r e A s t =  ~ [  E T r h # h  ( E T r h # h  )2 ] " 
h = l  h = l  

To get a feel for the magnitude of the 
underestimation of the variance, Table 1 
presents the relative bias of (1) when the 
sampling fractions are the same for the different 
strata. In this table, the "between-strata 
variance" refers to KAst , and the "within- 

stratum variance" refers to E 7rh~rh2" Recall 

that we are considering the performance of the 
variance estimator without finite-population 
correction factors. For stratified variance 
estimators with the factors, the relative biases in 
Table 1 would be larger by an amount equal to 
the sampling fraction times ( 1 -  tabled value) . 

For large sampling fractions, one may be 
interested in correcting the variance formula (1) 
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for its underestimation. This can be done by 
adding the following term to (1), which is an 
unbiased estimator of Ast: 

L Kh ( K -  Kh) 
/~st = - Z  K 2 (K 1) h= l  

+ 
k h 

L Kh 
1 [h~t Kh y~ _ ( Z  Yh )2 K - 1  -K-- -K-  ] " 

- h=l  

The unbiased estimator of the variance of y as 
an estimator of PSP is then given by 

L Kh (Kh_  1) 
v&rsp(Y)-  ~ ]  K ( K -  1) 

h= l  

1 2 
k h Sh + 

L Kh 
1 [h~l Kh y ~ _  ( ~  yh)2]  K - 1  ~ "K-- " 

- h-1  

With measurement error incorporated into the 
model, V&rwr(Y ) is still biased low for Var(y) by 
~st, which can still be unbiasedly estimated by 
Ast. 

Case 4: Stratified simple random sampling 
without replacement of clusters. This can be 
considered a generalization of Cases 2 and 3. 
The population (and superpopulation) is 
composed of L disjoint strata of clusters. For 
cluster i in stratum h, we assume that there are 
N h. population values (Y's) that are independent 
an~ identically distributed random variables 
with mean Phi and variance ~r~i... The hth 
stratum is composed of KL clusters, and the 
(Nhi' Phi' ~r~i) are independent and identically 
distributed random variables with distribution 
function Fh(N , #, a2). We assume that (K1, ..., 
KL) has a multinomial distribution with sample 
size K and proportions (lrl, ..., ~rL). The 
s~erpopulation mean is defined by #Sp= 

7rhEh(NP) / ~ lrhEh(N), where the 
subscript h on the expectation denotes the 
expectation with respect to F h- 

At the first stage of sampling, kh=cb(Kh).¢ 
clusters are sampled from stratum h as a simple 
random sample without replacement. At the 
second stage of sampling, nhi=gh(Nhi ) 
observations are sampled as a simple random 
sample without replacement from the (hi)th 
sampled cluster. Let Yhi be the mean of these 

sampled observations.~ The weighted mean 
estimator of/~SP is 

L Kh kh / ~ K h  kh 
Y - Z  k---h- ~ Nhi Yhi k"--ff ~ Nhi" 

h=l  i=l  h=a i=l  

Ignoring the finite-population correction factors, 
the repeated-sampling variance estimator of y is 
(Kish 1965, p 192): 

V&rwr(Y ) - 

L kh kh 

h=l kh(kh-1) i=l ~ [  Nhi (Yhi-Y)- kh Nhj (YhJ-Y) 

L Kh kh 

h=l i=l 

Considering asymptotics as K--,oo and L is 
fixed, one can show that 

lim K Var(y) - lim K E( V&rwr(Y ) )+Ast_c 
K-~c~ K-~oo 

where Ast_c = 

L 
~'h[ Eh (N#) -  #spEh (N) ]2 

h= l  
L 

[ ~ a'hEh(N) 12 
h= l  

As expected (from Case 3), the with-replacement 
variance estimator asymptotically under- 
estimates the variance; the without-replacement 
variance estimator is even more biased. We can 
asymptotically correct for the underestimation of 
V&rwr(Y ) by using instead v&rsp(y ) - V&rwr(Y ) 

+/~st-c, where 

^ 

Ast_c = 

k h k h 
L Kh 1 - 1 2 

~--K- [~hh ~ N h i Y h i - -  Y~hh ~ Nhi] 
h--1 i--1 i-----1 

L kh 
( Kh 1 

K k h h-1 i-1 

Case 5: Stratified probability-proportional-to- 
siz._.~e (Dos] sampling without replacement of 
clusters. This is similar to Case 4, only now we 
have a "size" cluster-level variable Z that can be 
used for differential selection probabilities. 
Typically, only a small number of clusters are 
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sampled with pps sampling from each strata. 
To be realistic, therefore, we consider different 
asymptotics than considered in Case 4 in that 
now the number of strata grow with a fixed 
number of clusters sampled from each stratum. 
The population (and superpopulation) is divided 
into L disjoint strata of clusters. For cluster i 
in stratum h, we assume that there are Nhi 
population values (Y's) that are independent 
and identically distributed random variables 
with mean /~hj and variance ~i.. ' and we also 
assume the exmtence of a positive variable Zhi. 
The hth stratum is composed of KL clusters, and 
the (Nhi , #hi' a2i' Zh i )a re  independent and 

identically distributed random variables with 
distribution function Fh(N , /t, ~r 2, Z). We 

assume that (K1, ..., KL) has a multinomial 
distribution with sample size K and proportions 
(Trl, ..., lrL). Since the superpopulation is the 
same as the number of strata grows (L--,c~), the 

L 
marginal distribution E zrh Fh(N ' #, a2, Z) 

h=l  
must be the same for all L, say 
Fsp(N , ~t, tr 2, Z). (Strictly speaking the 
subscripts h should be Lh.) The superpopulation 
mean is defined by gSp= Esp(Ntt ) / Esp(N ). 

At the first stage of sampling, k h clusters 
are sampled from stratum h as a pps sample 
without replacement. That is, the ratio of in- 
clusion probabilities for any two clusters in 
stratum h is the ratio of their Z values. Cochran 
(i977, pp 258-270) discusses some possible ways 
of taking a pps without-replacement sample. 
However, we must consider the possibility that 
there will not be sufficient clusters in the 
population in a stratum to sample the required 
number of clusters. For example, one cannot 
draw a sample of kh=2 clusters from a stratum 
that has only one cluster in it (Kh=l). To 
avoid this problem, we will pool neighboring 
strata so that the sampling can be done; the 
minimum pooling required will depend upon the 
particular pps sampling scheme. After pooling, 
let L ~ equal the number of strata and K~ equal 
the number of clusters in the (new) hth stratum. 

At the second stage of sampling, 
nhi=gh(Nhi ) observations are sampled as a 
simple random sample without replacement from 
the ith sampled cluster from the hth stratum. 
Let Yhi be the mean of these sampled obser- 

vations. The weighted mean estimator of #SP is 

L ~ k h 

E ~ Nhi Yhi//~hi(Zh ) 
- h=l  i=l  y =  

L I k h 

E E Nhi /~hi (Zh  ) 
h=l  i=l  

where Z h -- (Zhl , ... , ZhK~) and 

)~hi(Zh)--khZhi/~lZhj is the inclusion 
/ d---t 

probability for the ith sampled cluster of 
stratum h. A with-replacement repeated- 
sampling pps estimator of the variance of y is 
given by 

kh 1 

h = l  i = l  j = l  
Vhrwr (Y) = ( L, kh ) 2  

E E 
h = l  i=1 

_iNhi/' Yhi Nhi ~/ (Shah et al. 
where dhi \ ~h-~hi(~h-~h ) -- y Shi(Zh)] 

1901). 
We first address the question of whether 

Vhrwr(Y ) can be used to estimate asymptotically 
the variance of y. From Case 3, we know that 
that between-strata differences in the super- 
population means will not get reflected in the 
with-replacement variance estimator. Therefore, 
we consider the case when the strata-specific 
superpopulation means of y are identically 0. 
For k h - 2 ,  Taylor approximations yield: 

[L, ( )] 1 KhEh . 2  E[vhrwr(Y)]--~-~E E A h (Zh) 
• h = l  1 

1 E I ~  Kt ~K t -  " I :~--- ~--- ~---7~-~ , , /#hl#h2/khl2(Zh)~l 
h~ h 1)Eh\zhl i~h)  Zh2(Z,h) ,,/j T 2 [_h-1 

A- o(L -1) 

Wr ( y ) -  
L, ( )] 

h=l  "~hl(Zh ) 
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+ l--L- ; ~ K~(K~ -- 
T2 lh=l  

+ o(L-1) . 

.-. /#hl#h2 Ahl2(Zh))l 
1) t~h~.~hhl~h ) A-~(~h-~h).] j 

where Eh[. ] is the conditional expectation with 
respect to the strata-specific distribution 
Fh(Nh' #h' cry, Zh)given the pooling of the 
strata; E{. } on the right-hand side is the 
expectation over the distribution of strata pool- 
ings; T=E[EKhEh(N)]; Ahl(Zh)and Ah2(Zh) are 

the random expressions for the (first order) 
inclusion probabilities for the first two clusters 
from the hth stratum; Ahl2(Zh)is the random 
expression for the joint (second order) inclusion 
probability for the first two clusters from the 
hth stratum; and #hland #h2 are the means for 
the first two clusters from the hth stratum. 
(Since the Zhi and #hi are identically 
distributed, the designation of the first two 
clusters is arbitrary.) The difference in sign of 
the second terms of Var (y) and Vhrwr (y) 
insure that they will not in general be 
asymptotically equal. 

Since the with-replacement variance esti- 
mator is not consistent for the variance of y 
(even with no strata effects), we now pursue a 
different approach. Consider the decomposition 

Var(y)=E[Var(y I finite pop., strata pooling)] 

+ Var[E (y I finite pop., strata pooling)], 

where the conditioning is on the Y values in the 
finite population, as well as any pooling of the 
strata that was done. (This approach was 
implicitly used in the derivations for the 
previous cases.) An estimator of the first term is 
provided by any usual finite-population variance 
estimator. For example, an analog of the Yates- 
Grundy estimator (Shah et al. 1991) in the case 
of two-stage sampling, is given by 

L t k h k h 

Varwor(Y)- E E E Whij(Zh)(Uhi- 
h = l i = l  i>j 

Uhj) 2 

L t k h 
n s 2 +   hi(Zh)(1--nhi/Nhi) hihi 

h=l i=l 
where 

Whij(Zh)=[Ahi(Zh)Ahj(Zh) / Ahij(Zh) ] -- 1, 

Uhi -- (NhiYhi -- YNhi ) / (TAhi(Zh)), 

r r  

L t k h 

~ Nhi/Ahi(Zh)' 
h = l i = l  

nhi 
s~i -- E (Uhij -- Uhi)2/(nhi-  1), 

j= l  

Uhi j -- (Nhi/nhi)(Yhi j -- YNhi)/(TAhi(Zh)), 
nhi 

U h i -  E V h i j / n h i  , and 
j -1  

Ahij(Zh) is the joint (second order)inclusion 

probability of sampling PSU's i and j from 
stratum h .  For large L, one has E[vhrwor(Y)] = 
E[Var(y I finite pop., strata pooling)]. 

To estimate Var[ E(y I finite pop., strata 
pooling)] requires slightly more work. For large 
L, E (y I finite pop., strata pooling)] = Y and 
Var[E (y [finite pop., strata pooling)] - Var(Y) 

+ o(L-1), where V/is the finite-population mean. 
D 

We will now show how to estimate Var(Y) from 
the sampled data. It is convenient to change 
notation temporarily and let Yij be the jth 
observation in the ith cluster m the finite 
population (regardless of stratum designation), 
j - l ,  ... Ni, i - l ,  ..., K. In this notation, 

K Ni / K 
Y= E E Yij / E Ni which can be thought 

i=l j= l  i=l  
of as a ratio estimator. Its variance can approx- 
imated with a Taylor series, 

1 1 Var(Y) [KEsp(N)]2 Va i=lENiYi 

+#~pVar [i=~lNil -- 2#SpC°V[i~lNi~-(i' i=~l Nil ) 

No 
1 

1 E y  -+- op(K-1), where ?i  -- Nii j= l  ij " 

If we observed the data on all the 
individuals in the finite population, we could 
estimate Var(Y) by 
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\&r(Y) -- 

IS il 
i=l 

9 

1 ~[NiYi  lj~l I" where S 2 = K-"] -- NjYj , 
i=l 

1 ~ [ N i  l j ~ l  l $2 = K---I- -- Nj and 
i=l 

K j = l  _ _ 1  K 
SyN=KI--~I i~l INiYi--~ ~ Yj] [Ni Kj~I Nj] " 

Since we only observe the Y values on sampled 
individuals, V'ar(Y) is estimated from the 
stratified pps sample by replacing the finite 
population quantities with (design-based) 
estimators to obtain 

) V;r(Y) ~ ~-S}w÷ y~s~ -~ y s ~  
L r k h 1 { wheres2--K-1 E E 

h=l i=l Ahi(Zh) 

- 1 - x NhiYhi-  K E ENsjYsj/Asj(Zs) 
s=l j-1 

2 _ 1 ~  kh N~i(1-fh2i) nhi 
SyW-KI~= 1 i~l Ahi(Zh)nhi(nhi-1)j=~l (YhiJ-Yhi)2' 

fh2i -- nhi/Nhi' 

L r k h 
s i - ~  { 1 ~ E E  h=l i=l Ahi(Zh) 

[ 1L'ks ]2 / 
Nhi -- g E E N s j  /Asj(Zs) ' 

s=l j-1 

1 Ll kh 
andsyN=K_l  E E {  1 

h=l i=l Ahi(Zh) 

I Lr ks 1 1 
Nhi  Yhi-  ~ E E N sj ysj / Asj(Zs) 

s=l j=l 

[ 1 L kS ]/ 
Nhi g E  E N s j  /Asj(Zs) 

s=l j-1 

Theproposed estimator of Var(y) is v~rsp(y ) - 
V~rwo r (y )+  Var(Y) which under appropriate 
conditions wil l  have the property that 
lim L Var(y)= lim L v~rsp(y ) . 

L~c~ L~cx~ 
A disadvantage of the estimator vhrsp(y ) 

is that since it involves Vgrwor(Y), it requires 
knowledge of the joint inclusion probabilities. 
This may not be available to the analyst. In 
this situation, we offer the following ad hoe 
estimator that adds to Vgrwr(Y ) a between- 
strata variability component: vgrsP_a(y ) = 
varwr (Y) + /~st-pps, where 

^ 

Ast_pps -- 

1 g l K  ~ ( Nhi Yhi -- YNhi ) 
i=l Ahi(Zh) 

 h( h-l/ L hi(Zh/  h (Zhd h=l 

, 1/ 
Nhi 1 Nhj 

The idea behind this estimator is that since we 
know from Case 3 that the with-replacement 
variance estimators do not account for the 
between-strata variability, a better estimator 
would be obtained by adding an estimator of 
such variability. In this case, the added 
variability can be represented by 
Var[ E(y [strata pooling, Kh'S ) ], and Ast_pps 
is an estimator of this minus its expectation 
under the model that there is no between-strata 
variability. Other ad hoc estimators are 
possible. 

We end the discussion of Case 5 with the 
presentation of a simulation to demonstrate the 

130 



properties of the estimators. The super- coefficient can be expressed as a function of 
population consists of L strata. The clusters are means of Yi' XiY" X~, etc. Substitution of 

g ~  

_ 2 _  0) The proportions of appropriately weighted ~means calculated from of size 1 (Nhi 1, ~rhi . 
observations in each strata are equal (lr h - l /L).  the sampled data can yield an estimator of the 
The distribution of (Y, Z) in a stratum are parameter. Taylor series linearization can then 
(Y = l + s t r a t um  effect, Z=I)  or (Y= - l+s t ra tum be used to estimate the variance of the 
effect, Z=2), each with probability 1/2. The parameter estimator by expressing the variance 
finite population is derived as a simple random in terms of estimated variances of means (Binder 
sample of 5L observations from the super- 1983). If interest focuses on the super- 
population. For the sampling of the finite population parameter, then superpopulation 
population, the strata are first numbered from 1 variances should be used in the Taylor series 
to L. Then strata are pooled with their linearization. The results of section 2 of this 
neighbor(s) so that 2 observations can be paper then apply directly. For example, suppose 
sampled pps from each finite-population stratum one is interested in a superpopulation regression 
using Brewer's method (Cochran 1977, pp 261- coefficient in the context of the clustering 
263); strata of size 4 or more are not pooled, described above by Case 2: 
strata of size 2 or less are always pooled, and ~ S P -  
strata of size 3 are pooled depending upon the 
(three) values of Z. The results of the [ E ( N P x y ) / E ( N ) ] -  [E(NPx)/E(N)] [E(Npy)/E(N)] 
simulation are presented in Table 2 for the 
stratum effects being identically zero and for the [E(N/~xx)/E(N)] - [E(N/~x)/E(N)]2 
hth stratum effect being 
B-l[ { 1+ [[ 50 (h-1)/L ]] } / 51 ] where • is the Here, the cluster level vector (N, #XY' #X' #Y' 
normal cumulative distributionfunction and [[x]] #XX) is assumed to be independently and 
is the greatest integer less than x. identically distributed from a multivariate 

For the simulations with no strata effects, distribution F(N, #XY' #X' #Y' #XX)" The 
the without-replacement variance estimator is terms in brackets in the definition of ~$p are 
biased very low and the with-replacement superpopulation means. Variances o f  their 
variance estimator V~rwr(Y ) is biased slightly estimators will need to be estimated when 
high. The superpopulation variance estimator estimating the variance of the estimator of ~SP 
v~rsp(y ) appears unbiased with the approx- using Taylor linearization. Other possible 
imate estimator vSrsP_a(y ) biased slightly high. definitions of superpopulation parameters are 
The simulated standard deviations of the possible if one is willing to make stronger 
estimators V~rwr(Y), v~rsp(y),  and v~rsP_a(y ) modeling assumptions (Pfeffermann and Smith 
are .073, .060, and .061, respectively for the 1985), and these may be more useful in some 
L-200 case. For the simulations with strata applications. 
effects, even V~rwr(Y ) is biased substantially low 
because of its lack of incorporation of the strata REFERENCES 
effects. The superpopulation variance estimator 
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R a t i o  of  b e t w e e n - s t r a t a  to  
w i t h i n - s t r a t u m  v a r i a n c e s  

Sampl ing 
F r a c t i o n  .01 .1 1 

I% <1% I% I% 

107, I% 57, 9Y, 

257, 17, 77, 207, 

Table 2- Simulated variance of y and expectation of variance estimators 
using a pps sample with 2 sampled observations per pooled strata with 
a v e r a g e  unpooled  s t r a t u m  p o p u l a t i o n  s i z e  of  5 ( s i m u l a t i o n  s i z e  - 400 ,000)  ; 
see  t e x t  f o r  d e t a i l s  

Strata Effect = 0 

Number of unpooled  strata 
L=50 L=I00 L=200 

L Variance(~) .727 .725 .728 
L E(v£rwo(y)) .524 .526 .527 
L E(v£rwr(~)) .737 .738 .739 
L E ( v £ r s p ( y ) )  .721 .725 .726 
L E ( v £ r s P _ a ( y ) )  .734 .737 .737 

S t r a t a  E f f e c t  f o r  s t r a t u m  h - o - l [  { 1+ [ [  50 ( h - 1 ) / L  ]]  } / 51 ] 
Number of  unpooled  strata 

L=50 L=100 L=200 
L V a r i a n c e ( y )  .950 .951 .951 
L E(vg rwo(y ) )  .573 .576 .577 
L E ( v a r w r ( ~ ) )  .806 .809 .810 
L E ( v £ r s p ( y ) )  .944 .948 .950 
L E ( v £ r s P _ a ( y ) )  .972 .976 .978 
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