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I. Introduction 

A scientist usually thinks of linear regression as 
a means of estimating the parameters of a precon- 
ceived linear model or of testing the validity of a 
particular model within a continuum of slightly 
more general linear models. According to this 
"model based" theory of linear regression, part of 
the multivariate data- the dependent variable - is 
itself a random variable generated by a stochastic 
model. 

In contrast, most survey statisticians favor an 
orthodox "design based" theory in which all the 
data are fixed values; the only thing probabilistic 
is the selection process that randomly chooses 
some data points for the sample and not others. 
There is no model generating the data. There is 
only a useful way of summarizing the covariation 
of multivariate values in the f'mite population: 
ordinary least squares applied to the entire 
population. 

Orthodox design based theory may be mathe- 
matically appealing but it is scientifically sterile. 
This approach to inference can tell us nothing 
about the processes that shape the world since its 
only concern is correctly describing fixed, finite 
populations. 

Fortunately, there is an alternative school of 
thought in design based theory, which we will call 
"infinite population design based." This approach 
to inference, advocated by Fuller (1975 & 1984), 
holds that there is an underlying model generating 
the data, but that the analyst knows very little 
about it. In fact, the relationship among the 
variables may not even be linear. Linear regres- 
sion is simply a means of summarizing in linear 
fashion a relationship among the multivariate 
values generated by the model. Surprisingly, the 
infinite population design based approach to the 
analysis of survey data receives no mention in the 
otherwise excellent collection of papers, Skinner et 
al. (1989). 

Shah et al. (1977) discuss standard design based 
techniques for estimating regression coefficients 
and their variance given a stratified, multi-stage 
sampling design incorporating with replacement 
sampling in the first stage of selection. The same 
techniques are recommended by Fuller (1975) for 
infinite population design based inference when 
the first stage of sampling using is conducted 
without replacement. Kott (1991 a) shows that 
these design based techniques can also have useful 
properties from a model based perspective when 
there are missing regressors in the model and/or 
the error variance matrix is only vaguely specified. 

Several software packages perform linear 
regressions and estimate variances using the 
design based techniques discussed in Shah et al. 
Two popular ones are SUDAAN (Shah et al. 
(1991)) and PC CARP (Fuller et al. (1986)). 

This paper considers the application of linear 
regression to data from a survey repeated over 
time from an infinite population design based and 
an extended model viewpoint. For inferences 
under the extended model, little changes as long 
as elements can not move across primary sampling 
units (original sampling clusters). For infinite 
population design based inferences, variance 
estimation is affected when the stratification 
changes over across survey periods, as we shall 
see. 

Before proceeding, it will helpful to describe 
some examples of repeated surveys. Although the 
three example discussed below are all yearly 
surveys, the methodologies to be presented in this 
paper apply equally well to repeated survey 
employing other periodic schemes and to surveys 
that are repeated only once or at irregular 
intervals. 

The Annual Survey of Manufactures of the US 
Census Bureau enumerates a fixed panel of 
economic establishments for five survey years. 
Establishments are selected with probabilities 
proportionate to size using Poisson sampling. 

The June Enumerative Survey of the National 
Agricultural Statistics Service is a yearly survey of 
agricultural activity. Area segments are selected 
using a form of stratified simple random sampling, 
and all farms within those segments are enumer- 
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ated. Every year, 20% of the segments are 
removed from last year's sample and replaced 
with an equal number of new randomly selected 
segments. 

The Farm Costs and Returns Survey, also of the 
National Agricultural Statistics Service, enumer- 
ates a stratified simple random sample of farms 
each year. The selection process is independent 
across years and even the stratification can 
change. Nevertheless, some large farms can find 
themselves enumerated in more than one survey 
year. 

One final introductory note. For simplicity, the 
issue of survey nonresponse is completely ignored 
in this paper. 

2. The Conventional  Linear Model  

The conventional linear model assumes that the 
multivariate values of a population of M elements 
(observations) can be fit by: 

y = Xfl + •, (1) 

where y = (Yl, . . . ,  YM) ' ,  is an M x 1 vector of 
population values for a dependent variable; 
X is an M x K matrix of population values for K 
independent variables or regressors; 
¢/is a K x 1 vector of regression coefficients; and 
• is an M x 1 vector of disturbances or errors 
satisfying E(•) = 0 and Var(•) = E(••') = G21M . 

If one knows y and X, then the best linear 
unbiased estimator of ¢1 would be the ordinary 
least squares (OLS) estimator 

B = (X'X) -~ (X'y). (2) 

When data comes from a survey sample, however, 
y and X-values are only known for a sample of m 
elements which has been selected at random in a 
manner that is assumed to be independent of •. 

The best linear unbiased estimator of ¢/under the 
model given the information available is 

boL s = (X'SX)-~(X'Sy), 

where S is an M x M diagonal matrix of O's and 
l 's.  The i'th diagonal of S is 1 if and only if the 
ith element of the population is in the sample. 

The variance of boL s (a variance-covariance 
matrix) is GE(x 'sx)  -~. Since (X'SX) 1 is known, 
an unbiased estimator for this variance can be 
determined by estimating (y2 with 

s 2= (y-  XboLs)'S(y - XboLs)/(m - K). 

3. The Sample-Weighted Estimator 

Let P be a M x M diagonal matrix whose ith 
diagonal is the probability unit i was selected for 
the sample. We can call W = (m/M)SP -~ the 
matrix of sampling weights. Note that W = S 
when every element has a probability of selection 
equal to m/M. 

For many sampling designs the weighted 
regression estimator, 

b w = (X'WX) -~ (X'Wy), (3) 

is a design consistent estimator of B in equation 
(2); that is, as m grows arbitrarily large, 
plimm_.®(b w - B) = 0 with respect to the proba- 
bility space generated by the sampling mechanism. 

Not only is b w often a consistent estimator of the 
finite population regression coefficient B, it is also 
often a consistent estimator the infinite population 
regression coefficient B" = Q-1R, where Q = 
limM_~®(X'X)/M and R = limM_~(X'y)/M. All that 
is necessary is for Q-1 and R to exist and b w to be 
a consistent estimator of B. See Fuller (1975) for 
details. 

Unlike orthodox design based theory, the infinite 
population design based approach to linear regres- 
sion assumes the existence of a model generating 
the finite population data. It does not assume very 
much about the nature of that model, however. 
This approach employs the laws of probability in 
the same way as the orthodox design based theory 
does: through the sample selection process 
exclusively. 

Kott (1991 a) observes that b w can also be 
justified from a purely model based perspective by 
extending the linear model in equation (1) and 
assuming that the multivariate values of the 
population of M elements can be fit by the linear 
model: 

y = X/~ + z + •, (4) 

where y, X,/~ and • are as before except that 
Var(•) need not equal G21M . The new vector z, the 
putative missing regressor, satisfies limM_~®X'z/M 
= 0. It is a composite of all the regressors in a 
fully specified model for y that are otherwise 
missing from equation (1) and whose joint effect 
on y can not be captured within X¢/. 
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Under mild conditions, b w is nearly (i.e., asymp- 
totically) unbiased under the model (as n grows 

:~:i large). The same can not be said for boL s unless 
limu_.~X'Pz/m = 0, which in practical terms 
means that the probabilities of selection are 
unrelated to the missing regressors. Proofs of 
these assertions are in Kott (1991 a). 

4. Adding a Time Dimension 

Suppose now that the sample does not come 
from a one time survey but from T surveys of the 
same population of enumeration units (individuals, 
households, firms, or whatever). This population 
may be dynamic; that is, enumeration units may 
enter or leave the population across survey 
periods. 

At each survey period t, the population consists 
of M t elements, while the sample consists of m t 
elements. The joint population across all T 
periods consists of M = ~TM t elements, while the 
joint sample contains m = Z T m t elements. This 
means that the same enumeration unit (e.g., a farm 
in the June Enumerative Survey) is considered a 
different element in every survey period in which 
it is part of the population. 

Equations (1) and (4) look the same as before. 
The difference is that the M-vector y can may 
now contain multiple values for the same enumer- 
ation unit, one from every survey period the unit 
is in the sample. A single model parameter,/~, 
appears to apply in every survey period. Appear- 
ances are misleading, however. To see why, 
consider the following example, which is trivial 
mathematically but often useful in practice. Let 
the i'th row of X be (5il  , 5i2 , . . . ,  5iT), where 
fit = 1 when i=t and 0 otherwise. Now/~ = (131, 
.... ,13T)' also have T members. In fact, [3 t is the 
mean of the y-values for survey period t under the 
stipulated model. Note that each ~t is associated 
with an distinct survey period. 

Returning to the more general case, the frame- 
work for a defining the infinite population regres- 
sion coefficient, B*, has to be clarified. We will 
assume here that the number of survey periods is 
fixed. As the (joint) population grows arbitrarily 
large, MgrMs remains constant for all t ~ s. We 
will also assume for asymptotic (i.e., large sample) 
analyses that as the sample grows arbitrarily large, 
all mJms remain constant. 

Addressing the issue of variance (or mean 
squared error) estimation from the infinite 
population design based or extended model 

viewpoint requires a greater degree of specificity 
about the T sampling designs than has yet been 
provided. In what follows, we assume that the 
enumeration units selected for each survey period 
are chosen using a stratified, multistage probability 
sampling design. Unstratified and single stage 
surveys are special cases of this general sampling 
framework. Primary sampling units (PSU's) can 
be selected using either equal or unequal proba- 
bility sampling, without replacement. 

In the next section, we will further assume that 
the same n PSU's are randomly selected at the 
first stage of sampling for every survey period. 
We will, however, allow the enumeration units 
subsampled from these PSU's to change across 
periods. 

There is an obvious asymmetry in the way 
elements and PSU's have been treated. Unlike 
elements, PSU's do not change identities from one 
survey period to the next. With a single stage 
survey design, like that used for the Annual 
Survey of Manufactures, the PSU's are the 
enumeration units. Consequently, there may be as 
many of T elements (observations) associated with 
a single PSU. 

An additional assumption we will make in the 
next section is that each enumeration unit must 
remain in the same PSU across survey periods. It 
may enter or leave the population, but it can not 
change PSU's. 

5. Variance Estimation - - T h e  Restricted Case 

Suppose that for sampling purposes the 
population has been divided into H strata (H may 
equal 1). Suppose further that there are at least 
two randomly selected PSU's from each stratum h. 

Let n h be the  number of PSU's selected from 
stratum h. We can rewrite b w in equation (3) as 

bw 
H n h 

= Z Z (X'WX)-~X'WDhjY, 
h=l j=l  

where Dhj as a M x M diagonal matrix of l 's  and 
O's such that the ith diagonal of Dhj is 1 if and 
only if the ith member of y corresponds to an 
element in PSU hj. 

We assume here that in the definition of the 
infinite population regression coefficient, B*, the 
number of PSU's in the population of  each 
stratum tends to infinity in proportion to M. Kom 
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and Graubard (1994) explore an alternative 
framework where the relative stratum population 
sizes are random. 

In many economic surveys, some PSU's are 
selected with certainty. In the infinite population 
design based framework adopted here, such 
certainty selections would be grouped into strata 
and treated as if they were randomly selected 
draws within strata. 

We also assume here that the sampling design is 
such that the fhj = Q'IX'WDhj(Y " XB*) for j = 1, 
..., n h are identically distributed and independent 
from the infinite population design based view- 
point. This is equivalent to treating the sample of 
PSU's within a stratum as if it had been selected 
from an infinite population with replacement. The 
approach taken here can effectively change some 
of the properties of many probability proportional 
to size sampling designs. The framework adopted 
by Kom and Graubard (1994) may be superior in 
that regard. The appendix sheds some light on 
this issue. 

Under the assumptions adopted here, fhj ~ m)% 
when n is large, where "ghj = (X'WX) ~ X'WDhj 
(y - XB'). As a result, bw - B* = E n E n ')('hj, and 

v~ 
H n h n h n h 

= ~ nh(nh'l)'~[ ~ ~hj'ghj' - nh-~(~ ~hj)( ~ ~hj)'] 
h=l  j= l  j= l  j= l  

is a nearly unbiased estimator for the variance 
(actually the mean squared error matrix) of bw 
from the infinite population design based view- 
point. 

Unfortunately, the "ghj are unknown, so vv can not 
be calculated in practice. Since ghj = (X'WX) ~ 
X'WDhj(y - Xbw) ~ "ghj, the following practical 
estimator for the infinite population design based 
variance of bw immediately presents itself: 

H n h n h n h 
v = 5-'. nh(nh-1)-~[ Z ghjghj' - nh-~(E ghj)( E ghj)'] 

h=l  j= l  j= l  j= l  
(5) 

The variance estimator in equation (5) is 
computed by the SUDAAN software package 
when the design is specified as being with replace- 
ment in the first stage. PC CARP scales v by 
{(m- 1)/(m-K)}. 

One thing should be kept in mind when using 
these design based software packages for 
analyzing repeated survey data: the data must to 
sorted by stratum and PSU. That is to say, 

elements from different periods but the same PSU 
must be grouped together. 

Let us retum to the extended model in equation 
(4) and assume that z - 0 so that b w is an model 
unbiased estimator of ~. Following the logic in 
Kott (1991 a), v in equation (6) is an nearly 
unbiased estimator for the variance of b w under 
mild conditions so long as E(E;igk) is zero when i 
and k are elements from different PSU's and 
bounded otherwise. A more efficient variance 
estimator (i.e., one with more "degrees of 
freedom") is 

H n h 
v' = n(n- 1)1 Z Z ghjghj', (6) 

h=l j= l  

which equals v when H = 1 and Z Z ghj -- 0. 
Both v and v' rely on the fact that the 
m(X'WX)'~X'WDhj(y - X/~) = m(X'WX)-IX'WDhje 

mghj (j = 1, ..., nh) are independent random 
variables under the model with mean 0. 

6. Var iance  Es t imat ion  -- 

The  Less Res tr ic ted  Case  

Few repeated survey data sets come from 
surveys with the restrictive design assumed in the 
last section. In this section we generalize the 
results of the last section by allowing the first 
stage sample of PSU's to vary from survey period 
to survey period, as it does in the June 
Enumerative Survey. In fact, the stratification 
itself may change across periods as in does in the 
Farm Costs and Returns Survey. Moreover, 
PSU's can either come into existence or leave the 
population over time. As before, however, 
enumeration units can not change PSU's. 

Let n be the number of PSU's selected (in the 
first stage of sampling) for at least one survey 
period, and let H t be the number of strata in 
survey period t. Each of the n PSU's represented 
in the survey data set is in one of the H t strata for 
survey period t or is not in the sample for that 
period. We can classify these n PSU's into H 
variance strata based on their stratification in each 
period. PSU's j and k are classified in the same 
variance strata when they are in the same stratum 
in every period they are sampled; when one is not 
sampled, neither is the other. Observe that H < 
ZTnt  + T. 

As an example of how variance strata are 
formed, consider a data set consisting of two 
consecutive years of June Enumerative Survey 
data. Recall that 20% of the sample is rotated out 
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of the survey every year and replaced by incoming 
area segments (PSU's). Let us focus on an 
element in the data set from a particular design 
stratum containing 10 sampled area segments in 
each survey year. This element would be 
allocated to one of three variance strata: a variance 
stratum containing elements from the two area 
segments sampled in the first survey year but not 
the second, a variance stratum containing elements 
from the two area segments sampled in the second 
survey year but not the first, or a variance stratum 
containing elements from the eight area segments 
sampled in both years. 

From the infinite population design based view- 
point taken here, equation (5) still provides a 
nearly unbiased mean squared error estimator for 
b w under certain conditions as long as nh, the 
number of PSU's in variance stratum h with 
elements in the data set, is never equal to 1. The 
reasoning is unchanged from last section: if the 
sampling design is such that the mghj (j = 1, ..., nh) 
are nearly independent and identically distributed, 
then equation (5) provides a nearly unbiased 
estimator for the infinite population design based 
variance of b w. 

When some n h is equal to 1, variance strata will 
have to be collapsed for variance estimation 
purposes. This will, if anything, lead to variance 
estimates with a slight upward bias (see Wolter 
1985). In practice, there may have to be a good 
deal of collapsing. The resulting bias, however, 
may be small, as we shall see. 

From the viewpoint of the extended model (with 
z =- 0), equation (5) again provides a nearly 
unbiased estimator for the variance of b w, but 
equation (6) is better. The reasoning is the same 
as before: the m(X'WX)~X'WDhje are independent 
random variables with mean zero. Note that 
equation (6) provides the extreme case of 
collapsing variance strata when Y~ Y~ ghj = 0. 

11 Contrasting Aspects of the Two Approaches 
to Inference 

We have seen how well-known design based 
software packages can be used to perform linear 
regressions on repeated survey data in a scien- 
tifically meaningful manner. What is principally 
required for variance estimation is that PSU's and 
variance strata be defined appropriately for the 
package at hand. In particular, the variance strata 
described in the last section should be treated as 
strata, while the "sample size" of PSU's per 
variance strata is the number of distinct PSU's 

across all survey periods. 
The incorporation of sampling weights in b w is 

justified from the extended model viewpoint 
because it allows for the possibility that the 
conventional linear model in equation (1), which 
does not contain a z term, is misspecified. On 
the other hand, z is treated as if it were zero in 
variance estimation under the extended model. 
This logical inconsistency has a practical 
explanation. 

In many applications, the elements of z tend to 
be very small in absolute value compared to those 
of the random error vector, e. In fact, they are so 
small that their contribution to the mean squared 
error of b w can be ignored. If we fail to 
incorporate the weights in b w, however, there may 
be a bias in the estimator caused by z being non- 
zero. This bias does not decrease as the sample 
size increases. By contrast, the variance of b w, 
which is mainly the result of e being non-zero, 
does decrease with the sample size. Consequently, 
it may be prudent to remove the effect of a small, 
non-zero z when estimating b w even though that 
same z has an ignorable impact on the variance of 

b w . 
The assumption of the extended model that 

dominates variance estimation is that E(E;iE;k)  = 0 
when i and k are from distinct PSU's and bounded 
otherwise. There are two reasons why a PSU 
may contain more than a single element. 
Sampling designs can be clustered or the same 
enumeration unit can be selected more than once 
across survey periods. For certain surveys and 
regression equations, it may be reasonable to 
assume that while observations from the same 
enumeration unit are correlated, observations from 
different enumeration units in the same sampling 
cluster are not (conditioned on their respective x i 
vectors). If this assumption is true, then it makes 
sense from a model based perspective to redefine 
the enumeration units as the "PSU's" when using 
a design based regression package. This increases 
the efficiency of the resulting variance estimator. 

The justification for the variance estimators in 
equations (5) and (6) from the extended model 
viewpoint relied on the mghj = (X'WX) -~ X'WDhj 
(y - Xbw) having a mean of 0. By contrast, in 
the infinite population design based approach to 
inference taken here, the fhj = QIX'WDhj(Y- XB*) 

mghj may be identically distributed within strata, 
but they did not have means of O. Heuristically, 
the latter approach allows for the putative missing 
regressor to have different impacts on different 
strata. 
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In practice, if the use of equation (5) leads to 
appreciably smaller estimates of the variance of 
b w across the diagonals than does equation (6), 
then the model in equation (1) may be under- 
specified. A potential remedy is to add regressors 
to the model that are related to the stratification, 
such as separate dummies for each stratum or 
variance stratum. 

8. An Example 

In this section, we explore a synthetic example 
that may shed some light on a number of issues. 
Consider a population covering two survey 
periods. The population consists of 50 business 
entities (enumeration units) in Period 1. By 
Period 2, eight of these entities have gone out of 
business, and two new entities has emerged. 

As far as the sampling design goes: in Period 1, 
ten entities were selected for the sample with 
certainty, while another ten were selected via 
simple random sampling without replacement 
(srswor). In Period 2, eight of the original ten 
certainties were again selected with certainty, 
while an additional twelve entities were selected 
via srswor independently of the selections in 
Period 1. None of the period 1 certainties went 
out of business, and neither of the two emerging 
entities were Period 2 certainties. 

There are 94 elements in the joint population (50 
+ 44) and 52 PSU's (entities). Let us label the 
entities in Period 1, 1 through 50, and the two 
new entities in Period 2, 51 and 52. Suppose the 
sample from each design stratum looked like this: 

Sic  
S1p 

$2c 
S2p 

= {1, 2, ...., 10} 
= {11, 12, ..., 20} 
= {1, 2, ..., 8} 
= {10, 11, 12, 21, 22, ..., 28, 51}, 

where the first subscript of Sxz denotes the period 
(1 or 2) and the second whether the stratum 
contains certainty (C) or probability (P) selections. 

Most of the sampled entities can be grouped into 
one of four variance strata: 

V 1 = { 1, 2, ..., 8} consists of certainties for both 
periods, 
V 2 = {11, 12} consists of random selections for 
both periods, 
V 3 = { 13, 14, ..., 20} consists of random 
selections for Period 1 only, and 
V 4 = {21, ...., 28, 51} consists of random 
selections for Period 2 only. 

This leaves entities 9 and 10, each of which merits 
its own distinct variance stratum. Unfortunately, 
there must be at least two PSU's in each variance 
stratum, so some collapsing is required. One 
simple solution is to create 
V 5 = {9, 10}. 

Observe that the fact that Entity 51 is new for 
Period 2 plays no part in variance stratum 
assignment. Similarly, we are not concemed 
about entities in V 3 that may have gone out of 
business after Period 1. 

Let Yjt be a value of interest for entity j in Period 
t. Each jt denotes a distinct element in the 
population. 

One very simple use of linear regression is to 
estimate the change in average y values between 
Periods 1 and 2. This can be done, for example, 
with the following regression equation: 

Yjt = [~0 + [~lXjt + ejt, (7 )  

where Xjt-" 1 when t = 2, and zero otherwise. 
If OLS were performed on the entire population, 

then one would find that the finite population 
regression coefficient B~ = ~tJ2 Yj2/44 - ~tn Yjl/50, 
where ~-"~Ut means summation over the population 
at Period t. The sample weighted estimator for B~ 

is blw = ~'~s2 wj2Yj2/ES2 Wj2 - Es1 WjlYkl/)-'~S2 Wjl'  
where St denotes the sample for period t, and 
Wjt -- 1 if entity j is a certainty selection for period 
t, 4 i f j >  1 0 a n d t =  1, or 3 i f j > 8 a n d t = 2 .  

The finite population coefficient B l measures the 
difference between the average y value among the 
44 entities in Period 2 and the 50 entities in 
Period 1, but sometimes we are interested in more. 
We may want to draw inference about different 
periods in general or, less grandly, about the 
conditions that caused the entities in the two 
periods under examination to be as they are. For 
that, we can estimate the infinite population 

• • • • _._ 
regression coefficient: B 1 = Y2 - Y l ,  where Yt 
limN_,®{Eut Yjt/rNt}, N t is the number of entities in 
the population at period t, and N = N1 + N2. 
Happily, its estimator is also blw. 

Let gjt = Wjt(Yjt- ESt WktYk/ZSt Wkt)/ZSt Wkt" The 
variance estimator for b~w as an estimator for BI* 
has the form of equation (5) with five variance 
strata (V~,..., V5). Observe that n 1 = 8, n 2 = 2, 
n 3 = 8, n 4 = 9, n 5 = 2, and n =29. Each ghj in 
equation (5) is represented by gj+ = dj2 - djl, where 
djt = gjt when j ~ St and 0 otherwise. 

The key to variance estimation from the infinite 
population design based viewpoint taken here is 
that the ngj+ are nearly independent and, except in 
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the collapsed stratum V 5, nearly identically distri- 
buted. This is because each ng. t is approximately 
equal to qjt = limN-~oo nwjt(Yjt- Yt )/Nt, and the qjt 
within each of the original design strata (Vlc, V1p, 
V2c, and V2p ) are identically distributed. As a 
result, the qj+ = qj2 - qjl, where 8jr = qjt when 
j e St and 0 otherwise, are identically distributed 
within V1 through V4, respectively; not sur- 
prising, since the variance strata were created for 
this very purpose! All the qj+ are PSU-specific 
and so assumed to be independent from the infi- 
nite population design based viewpoint taken here, 
even those in V 5. The fact that the qj+ in V5 are 
not identically distributed may bias the variance 
estimator upward. 

From the extended model viewpoint, the goal is 
to estimate the model parameter 131 in equation (7). 
Let ejt = Zjt -k- ~jt, where [~jt is a random variable 
with mean zero, and zjt is the putative missing 
regressor. If Zjt ~ 0, or if its size is very small 
compared to the error term ejt, then all the PSU- 
specific ngj+ are nearly independent and have 
approximately the same model expectation, 0 
(since each ngjt ~ nwjt8jt/Est Wkt ). As a result, the 
variance estimator discussed above is also an 
estimator of the model variance of blw as an 
estimator for [3~. A more efficient variance 
estimator would have the form of equation (6) 
with gj+ again replacing ghj" 

In this particular example, equation (7) has only 
a single explanatory variable. Consequently, it 
may not be very reasonable to suppose that the 
putative missing regressor has no influence of the 
variance of blw. Infinite population design based 
inference seems superior to inference under the 
extended model for this example. 

Kott (199 lb) discusses the estimation of a 
system of linear equations. In this context, the 
analyst has a strong belief in the completeness the 
model, and it is infinite population design based 
inference that fails to be a useful statistical tool. 

9. Two Final Comments  

9.1 The Jackknife 

Equation (5) takes the form of the so-called 
"linearization variance estimator" computed by 
SUDAAN and PC CARP when one stipulates with 
replacement sampling in the first stage of 
selection. A well-known altemative to this 
estimator is the jackknife; see, for example, 
Krewski and Rao (1981, equation (2.4)). The 
jackknife variance estimator for b w conformal to 

equation (5) is 

H n h 
vj = ~ (n h - 1)/n h Z (bw<hj) - bw)(bw~hj ) - bw)', 

h=l j= l  (8) 

where bw(hj) = (X'W(hj)X)-lx'w(hj)Y, and 
nh 

W¢hj) = W(I M + 1/(nh-1 ) ~ Dh s - (nh/[nh-1])Dhj). 
j=l  

Observe that 

bw(hj) b w ~ (X'WX)-lX'W 

[ 1/(n h- 1)~n Dhg " (nh/[nh_ 1 ])Dhj](y - XB*) 

(x'wx)-'x'w 
[ 1/(n h- 1 ))-'f Dhg - (nh/[nh-1])Dhj](y - X/~) 

" ghj 
nh 

+ X ghg/(nh-1) 
gcj 

under mild conditions. It is now not hard to see 
that given the same definitions of PSU's, variance 
strata, and PSU sample sizes, the Jackknife vari- 
ance estimator in equation (8) is nearly unbiased 
in both the extended model and infinite population 
design based senses whenever the linearization 
variance estimator in equation (5) is. Rust 
(1985) discusses a computational simplified jack- 
knife where the PSU's within a stratum are ran- 
domly grouped, and then a group is deleted one at 
a time. In other words, the groups become the 
variance PSU's in equation (8). This simplifi- 
cation is a practical necessity for many single 
stage surveys where the number of PSU's can be 
in the thousands. 

If the original PSU's and variance strata are 
defined as in the text, and nh is the number of 
variance PSU's in variance stratum h, then it is 
not hard to show that Rust's computationally 
simplified jackknife produces a variance estimator 
that is also nearly unbiased in the extended model 
sense whenever the analogous linearization form 
is. From the infinite population design based 
viewpoint taken here, each variance PSU in a 
variance stratum much contain the same number 
of original PSU's (so that the bw(hj ) have identical 
asymptotic distributions for each variance PSU j in 
variance stratum h). 
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9.2 A Warning About Enumeration Units 
Changing PSU's 

When developing variance estimators in the text, 
we assumed that enumeration units can not change 
PSU's from one survey period to another. This 
will be the case for many repeated surveys, 
especially economic surveys where samples are 
drawn from list frames. 

Most demographic surveys, however, are based 
on area flames. When the enumeration unit for a 
repeated demographic survey is a household or an 
individual, it is not uncommon for some enumer- 
ation units to relocate from one PSU to another 
across survey periods. Thus, the following point 
needs to be underlined: When two sampled 
elements in the data set from a repeated survey are 
associated with the same enumeration unit but 
different PSU's, the variance estimators discussed 
in this paper do not formally apply. It is easy to 
see from the extended model viewpoint that the 
independence of sampled elements from different 
PSU's is lost when this happens. 
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