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1. Introduction 

The Generalized Estimation System (GES) being 
developed at Statistics Canada produces domain 
estimates from sample surveys using auxiliary 
information. This may involve knowledge of the 
auxiliary variable values x k for each unit k in the 

population U, but it is sufficient to know only the 

auxiliary population totals, X = ~ v x k .  

We let s denote a probability sample drawn from the 
finite population U=[I ..... k, .... iV} according to a given 
sampling design with known, strictly positive inclusion 
probabilities. The variable of interest is given by y. 
Estimates are wanted for various parameters, including 

the y-total for the whole population, Y = ~ v  Yk and the 

y-total Y d = ~ v y k  for an arbitrarily specified 

subpopulation or domain U d c_ U . 

From the selected sample s, we have the observed 

survey data { (Yk ,Xk) ,k  ~ S}. In the current GES, the 

observed value Yk is given a total weight w k = akgk,  

calculated as the product of 

(i) the sampling weight a k = 1/n k, where n k is the 

inclusion probability of unit k, and 
(ii) the g-weight gk '  calculated with the aid of the 

known vector total X as 

gk - ' l + ~ ' X k / C k  (1.1) 

with 
p 

k ' = ( X - X , ) ( E a k x k X : / c l , )  -I 

where c k are specified constants and X~ = ~_~,akx k . 

The GES produces estimates using the final weights 

Wk. The entire population y-total Y = ~ u  yk is 

estimated as 

YGR~G = ~ , w ,  Yk = ~ s a k g k Y k  (1.2) 

Furthermore, if s d = s c~ U d denotes the part of the 

sample s falling in the specified domain U d , the 

domain y-total Yd = ~ u ,  Yk is estimated as 

~'ecsr.c : ~ . , s  wkYk =~_~s akgkYk (1.3) 

Under general conditions, ]~cRec and I~aGRe a are design 

consistent estimators and corresponding design 
consistent variance estimates are easily calculated 
following the theory of regression estimators as 
described in Estevao, Hidiroglou and S~irndal (1994). 

In survey practice, estimates are usually required for 
many different domains which may or may not overlap. 
Of frequent interest is the case where a set of domains 
forms a partition of U -  the domains are mutually 
exclusive and exhaust U. If a set of domains U 1 . . . . .  U o 

forms a partition of U, then the domain estimates 

defined by (1.3)satisfy ~dYdGREG-" YGREG' where 

l)c~c is given by (1.2) - the domain estimates add up to 

the estimate made for the entire population. This is a 
desirable property for most surveys. In the following 
presentation, we need only concentrate on the 
estimation of the total Yd for a single domain U d . 

In general, the weights gk in (1.2) and (1.3) can be 

derived by minimizing a measure of distance between 
the set of final weights w k =akg  k and the initial 

sampling weights a k subject to the constraint 

~ s a k g k X k  "- X (1.4) 

Weights derived in this manner are called calibrated 
weights by Deville and S~ndal (1992) who examined 
several calibration methods corresponding to different 
distance measures. The weights given by (1.1) are 
calibrated since they satisfy (1.4). They are obtained by 
minimizing the distance 

E Ck(Wk--ak / a  k (1.5) 

subject to (1.4). In practice, some of the weights w k 

may be negative while others may be unduly large. To 
constrain the values of these weights, Estevao (1994) 
suggested a computationally efficient algorithm for 
minimizing (1.5) subject to (1.4) and bounds 
I k <_ W k <_ U k on the individual weights. 
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We are interested in looking beyond the current GES 
and exploring other estimators which use known 
auxiliary totals to improve estimation through 
calibration and regression fitting. This paper proposes 
an extension of the class of estimators defined by (1.2) 
and (1.3) and examines some properties of the 
estimators in this class. 

2. An Extended Class of Estimators 

Consider a domain U d where U d c_ U .  We want to 

create a class of design consistent estimators of the 
domain total Yd" Let us express Yd as the sum of a 

prediction component and a residual component, 

Yd = Yd PREO + Yd ers (2.1) 

Here, Yd PRED - "  Z d B z  with Z a = ~_% " Z k and the vector 

B z is given by B~=(~_~VZj, Zk/Ck)-I~_~uzkYk/C*k, 
, 

where the c k are specified constants. In addition, we 

= ~  E k with E k = y k - z ' k B ~  • have Yd erS tJ , 

Now (2.1) has an obvious interpretation in terms of 
regression analysis. Suppose the whole population is 

observed so that the data {(Yk,Zk ) , k  ~ U}  are available 

for fitting a census regression fit. This fit produces B~ 

and the corresponding predicted values Yk = z'kB~ for 

k e U.  If y is predicted well by z in the domain U d 

then Yd PREO is close to Yd" Furthermore, the remaining 

error  Yd R,y.s is small relative to Yd P R E D "  

Now in practice only units in the sample s are observed. 
This means that Z d , B~ and Yders are unknowns 

requiring estimation. Many articles on domain 
estimation assume that auxiliary information is available 
for the domain so that Z d is known, but in practice 

there is usually no such information at the domain level. 
Hence Z d is unknown and must be estimated. Since 

Yd PREO is close to Yd under the regression model, the 

central issue is to accurately estimate Yd PerO" TO obtain 

maximum efficiency in the estimation of Ya REs is of 

secondary importance. However, we need to obtain a 
design consistent estimator of Yders, otherwise the 

estimator of Ya will be design biased. 

We suppose that the data { ( y k , Z k ) , k  ~-S} are 

available for a regression fit. We estimate Z d as 

Za = ~_%WkZk,  where w k are the weights from the 

calibration ~ s  WkXk = X = ~-~v Xk on the vector x k as 

described in section 1. The regression vector Z k may be 

the same as the vector x k but not necessarily. We 

consider a class of estimators of the domain total Yd 

defined as 

Where 
^ t  ^ 

~'d Pert) = Z d B z 

. • 

= * " * s W k Z k Y k / C k  

and 

(2.2) 

0 * * The weights Wk, Wk and ck are defined in an 

appropriate manner. Some typical choices are discussed 
^ 

in section 3. We note that the two sums in B z extend 

over the entire sample s, whereas the sums in Zd and 
^ 

Yd ~ extend only over s d , the domain part of the 

sample. Thus, the regression fit "borrows strength" from 
the whole sample. 

The corresponding estimator of the entire population Y 

is defined by (2.2) by letting the Sums in Zd and I~ d ers 

extend over all of s instead of just s d . Thus the sum of 

the I~ d over a set of domains that partition U 

automatically adds up to the estimate made for the 
entire population. This satisfies the important 
requirement of additivity. 

3. Computational Steps and Properties of the New Class 

The computation of I~ d = I~ d ee.eo + I~d ers defined by 

(2.2) can be viewed as a procedure involving three 
steps. 

Step 1 The calibration step consists of the calculation 

of the weights w k used in Z d" They are of the form 

w k = a k g  k where the gk are given by (1.1) or more 

generally, by any calibration method satisfying (1.4). 
The calibration is based on the vector of known totals 

X = ~_~vXk. In a survey, a vector of totals may be 

known at the entire population level or at some 
subpopulation level such as strata or post-strata. The 
subpopulations for which these totals are known are 
called calibration groups. They are assumed to form a 
partition of U. The associated variables are called 

calibration variables. Our notation X = ~_~uXk 

incorporates both the definition of the calibration 
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variables and the calibration groups. For example, 
suppose there are P calibration groups Up, for 

p = l , 2  ..... P and a single variable x. Then x k is the 

vector given by x k = (~lkXk . . . . .  8pkX k . . . . .  ~ e k X k )  where 

~Spk is the group identifier such that S pk = 1 if k e Up 

and ~Spk = 0  if k ~ U p .  It follows that X is the 

corresponding vector of the P known group totals of the 
calibration variable x. More generally, we can have 
different sets of calibration variables in the different 
groups. For example, we can specify x I and x 2 in the 

first group, x~ and x 3 in the second group and so on, 

as long as the corresponding totals are known for the 
variables in each group. In this case x k is given by 

• = . . . ) .  
^ 

Step 2 In the regression fit step, we calculate B~ 

using the predictor vector Z k.  T h e  specification of 

regression groups and predictors is reflected in the 
definition of Z k. When there is more than one 

regression group, this means a separate regression fit in 
each group. Different sets of predictors could be used in 
the different groups. For example, with three groups we 

J 

, , ) can define Zk as Zk = ~kZlk,~2kZ2k,~3kZ3k where 

~Srk is the regression group identifier for unit k and 
p t 

z~ = ( z ~ , z 3 , z , )  , z2 = (z~,z2) and z3 = z~. 

Also requiring specification in this step are the weights 

w k and c k .  A standard choice is w k = a  k and c k = I 

for all k ~ s .  Note that z k need not be identical to the 

calibration vector xk in step 1. However, zk = xk is a 

special case of interest. In this case, the regression 
groups coincide with the calibration groups and in each 
group, the predictor variables are also the calibration 
variables. 

Step3 The residual estimation step consists of 

calculation of Yd ReS" Since B~ is obtained from the 

regression fit in step 2, the only additional specification 

0 Typical choices include is the set of weights w k .  

0 0 
w k = a  k and w k = w  k = a k g  k.  

We now illustrate estimator (2.2) by a series of remarks 
in this section and by examples in sections 4 and 5. 

Remark 3.1 We can write l~d = ~ , ,  w k Y  ~ + R d where 

R d = ~ , , ( w  ° - w k X y ~ -  , ^  ~. z k B z l  Here we note two 

things. 

0 (1) If we choose w k = w k then R d = 0 and 

~'d : ~_~, W kYk : ~_~, a k g k Y k ,  which is the estimator 

used in the current GES assuming gk is given by (1.1). 

0 the regression step is For this choice of w k, 

superfluous. 

o (2) If w k g w  k then under general conditions 

N - l { ~ s , ( w  ° - w k ) ( y  k - Z : / ~ ) }  is of order O p ( n  -1/2) 

which is the same order as N - l ~  ". WkY k - - Y d ~ "  SO L~-, Sd J 

although R d is an estimator of 0, it cannot be ignored 

on the grounds that it converges more rapidly than the 

first term, ~ , ,  WkYk • However, the variance 

contribution of R d is in many situations modest or 

insignificant compared to that of ~ , ,  w k Yk 

Remark 3.2 Suppose that the domain of interest U d 

coincides with a calibration group and z k = X k .  Then 

X d = ~ _ , v X k  is a known total and by calibration 

Zd = ~_~, WkXk = X d  " In this case (2.2) becomes 

I~ d =Xd/~ x + 2 ,  wO(yk--Xk/lx) 

* 0 The particular choice w k = w k = a k leads to estimators 

discussed in Chapter 10 of S~ndal, Swensson and 
Wretman (1992). 

Remark 3.3 Suppose that the domain of interest U d 

coincides with a calibration group. Then X d = ~-~v, X k 

is a known quantity and the weights w k = a k g  ~ are 

calibrated to satisfy ~ s ,  W kXk = X d" In particular, if x 

denotes a single calibration variable in the vector x, 

then ~s~ = WkX k X d.  Now suppose we use (2.2) to 

estimate the corresponding domain total X d of variable 

x. We hope to obtain X d = X d since the estimate should 

be the same as the known value. In fact (2.2) has this 
property provided that x k is contained in the predictor 

vector Zk .  To show this, we put Yk = Xk in (2.2). Then 
t 

the regression fit gives /~z = (0 . . . . .  1 . . . . .  0) , a vector in 

which all entries are 0 except for a single entry of 1 in 
the position that x occupies in the vector z .  This gives 

Yk - z~/~z = xk - xk = 0 for all k ~ Sd. Therefore, 

using (2.2) to estimate X d ,  we get the result 
p 

~('d Sd "-- S. = a k g k Z k B z  a k g k x k  = X d,  as we wanted 

44 



to show. Thus, if U d is a calibration group, estimator 

(2.2) reproduces the known total of any variable used 
both as a calibration variable and as a regression 

0 predictor. This holds regardless of how the weights w k , 

w~ and c~ are specified. 

To ensure that (2.2) reproduces all of the known 
calibration totals, we must include all of the calibration 
variables as regression predictors in the definition of 
Zk. Of course, we can include additional variables. 

Remark 3.4 The estimator of the entire population 
total Y can be obtained by setting s d = s in (2.2). This 

estimator can be written as 
0 ^ p  0 

~'= ~_~sWkYk + B ,  ~_~, (Wk --Wk )Zk 

NOW let us make the following two assumptions: 

(i) Suppose that { w ° , k  ~ s }  are calibrated weights 

calculated based on the entire population as a single 
E ° calibration group. We have WkZ k = Z ,  where 

$ 

Z = ~ u  z k is the vector of known totals for the whole 

population. 

(ii) Suppose that {w k,k ~ s} are calibrated to z-totals at 

a lower level of the population given by the partition, 
U~ ..... Up ..... U e . For each subpopulation Up, we have 

~-Jsp WkZk = Zp where Zp = ~-~u~ Zk is a vector of 

known totals for the subpopulation and Sp = s c~ Up. 

In view of assumptions (i) and (ii), it follows that 
0 0 ~_~ (Wk -- W k )Zk = 0 and I~ = ~ s  w k Y k" The practical 

significance of this is as follows. Suppose for timeliness 
or other administrative reasons, it was decided to 

. _  0 release I ~ ~_~WkY k as the estimate for the entire 

population. Later, it is possible to produce "on demand" 
domain estimates given by (2.2) which automatically 
benchmark to the already released estimate 

0 population. ~r'-~_~sWkY k for the entire In addition, 

these domain estimates are strengthened by using the 
more detailed auxiliary information Z p. 

4. Domains with Known Auxiliary Totals 

Domains of interest in a survey often represent different 
"levels" of the population. For example, in a business 
survey, estimates may be wanted for domains 
corresponding to industry groups at different levels of 
the Standard Industrial Classification - two, three or 
four digit level (SIC2, SIC3, SIC4) groups. At lower 

levels, we have fewer sample units. This makes it more 
important to use auxiliary information to the fullest 
extent possible. At higher levels, there is usually 
sufficient data to guarantee good precision. 

Suppose x is a positive auxiliary variable related to the 
study variable y by a strong linear relationship roughly 
through the origin. Then it is appropriate to use x as an 
auxiliary variable through some form of ratio 
estimation. The example in this section assumes that 
auxiliary totals are available directly for the domains of 
interest. Section 5 gives examples where this is not the 
case, corresponding better to what is usually found in 
practice. 

We assume a probability sample s from U from which 

we obtain the data {(Yk,Xk),k ~ s}. Let us consider the 

estimation of the y-total for domain U 0' where 

U 0 c U .  The part of the sample falling in this domain 

is given by s o = s  n U 0 . We examine the following 

cases, depending on the level of availability of the 
auxiliary totals. 

Case 1 Suppose the auxiliary total X 0 = ~,UoXk is 

known for the domain. We can compute the g-weights 

gk = Xo/f(ox for k ~ s o by calibrating at the domain 

level so ~_~soakgkXk = X o. Using these in (1.3) allows 

us to produce an estimate for the domain total 

Yo = ~-~Vo Yk as the ratio estimator 

- 

Now suppose we need to produce estimates for a set of 
subdomains Uod for d = 1, 2 .... D, which partition the 

domain U 0 . These estimates may be part of the regular 

survey requirements or they may be special requests at a 
later date. If we do not have auxiliary information for 
the subdomains, we use the previous g-weights to 

estimate the subdomain total Yod = ~-~Uo, Yk as 

Although these weights yield estimates of good 
precision for U 0 , they may give estimates of rather poor 

precision for the subdomains U0d. Here, ]~Od suffers 

from a lack of detailed auxiliary information since the 

weights gk =Xo/Xo~ are calibrated on an x-total 

known only at a level above the subdomain of interest. 
The strength of the auxiliary information is reduced 
when estimates are made for subdomains. However, 
using the auxiliary information X o for calibration is 

better than having nothing at all since 
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: is normally a more precise 

estimator than the ordinary Horvitz-Thompson 

estimator ~d~- 

Let us now consider case 2 where more detailed 
auxiliary information is available through known 
x-totals for the subdomains Uoa. In this case, we can 

use the subdomains as calibration groups, x is the 

calibration variable and the group totals Xod = ~-~Uo, X k 

are known for d - 1, 2 .... D. This information produces 

the weights Wk = a k g k  with gk =Xod/ffod,~ for 

k ~ Sod = S n Uod. Let us look at the form of estimators 

1~o and ]~oa for specific types of regression groups and 

o We examine cases 2a, 2b and 2c shown choices of w k . 

below, assuming throughout that w k = a k and 

C k = C k = X k • 

0 Case2a We define w k = w  k. In this case, the 

regression fit is superfluous as noted in Remark 3.1. 

0 /Xo,, • Let consider Case 2b We define w k = a k X o us 

the subdomains as the regression groups and x as the 
regression predictor in each group. The fitted slope for 

Uod iS170a:Yod,,IXod,, " 

o I f (o~ .  Let  Case 2c We again define w k = a k X o us 

consider the domain Uo as the only regression group 

and x as the regression predictor. The fitted slope in U 0 

is /7o = 17o,/Xo, . 

Using (2.2) we obtain the following design consistent 
estimators of Yo and You. Interestingly, cases 2a and 2b 

lead to the same estimators for both Yo and Yoa. 

Case Level Estimator 

1 domain 

subdomain i~. o~d I, = (X o/~'o,< )I~o~ 

2 a = 2 b  d o m a i n  ¢'.o (2") = EdDI (Xod I "Xodtt )~rOdlt 

subdomain t;.O~da' : (X0d/Xoa~ )I~oa~ 

2c domain I~o~° = (Xo / Xo,, ) I~o,, 

s u b d o m a i n  Y.,o(2C)=XodDo +(Xo/£oltX~rodtt--XodTtDO) 

The five different ratio estimators shown in the table 
prompt the following comments. 

Remark 4.1 For the domain U 0 , we do not expect a 

great difference in the variances of I~o")= I7o ~2c) and 

17o (2a) unless the subdomain slopes Yod/Xod differ 

greatly. In most practical situations, the principal gain in 
precision is realized because x is a strong overall 
covariate, not because the slopes differ in the 
subdomains. 

Letting Wod = Xod - (X  o/Xo~ ) Xod~ , we Remark 4.2 

can write the subdomain estimators "0d~(2a) and -Od~(2c) as 

I~o (2a) ^ Bod Wod and ~(2c) ~(1)+ [~oWod In d =Y0~ ) + = "0d "0d 

~(2~) and Q(2c) other words, we can represent "Od "0d as the 

simple estimator I~o~ d) plus either the regression 

adjustment BodWd or /7oWd" The slight difference 

between ~(2~) and ~(2c) lies in the slope estimates "0d "0d 

applied to the regression adjustment. Using /70 rather 
^ 

than Boa has little impact on the variance, so there will 

be little to choose between ~(2a) and ~(2c) By "0d "0d " 

contrast, both ~(2a)  and ~(2c)  may improve "0d  "0d 

significantly on I~o(~ ) because of regression adjustments 

correlated negatively with I~O(d~). This illustrates that 

precision at a lower level can be improved considerably 
by having access to auxiliary totals at the more detailed 
level. 

Remark4.3 S u p p o s e w e  have already released an 

estimate for domain U 0 as I~o"> = (Xo/Xo~)Yo~. We now 

want to use auxiliary information for the subdomains to 
provide subdomain estimates that add up to the released 

domain estimate. The subdomain estimates ,~(2~) satisfy "0d  

this requirement. They are automatically benchmarked 
to agree with the original domain estimate since 

I~o ~2c' = I~o"' (Xo/'Yo~)I~o This is an illustration of 

remark 3.4. 

5. Auxiliary Information for Groups other than Domains 

In many surveys, the auxiliary information extracted 
from the frame or an administrative source, does not 
relate to the domains of interest but to other similar 
subpopulations. To illustrate, it frequently happens in 
business surveys that the Standard Industrial 
Classification (SIC) code recorded on the sampling 
frame is outdated for some business establishment 
because of coding errors or change of business activity. 
The current or actual SIC code of an establishment may 
be different from the code recorded on the frame. The 
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codes on the frame can only be updated for the units in 
the current sample, after a review of the information 
reported by these units. 

The codes on the frame define the administrative SIC 
groups. Auxiliary totals are often available for the 
population in these groups. If so, we can define these as 
calibration groups. On the other hand, we have the 
actual SIC groups identified by the updated code 
observed only for the sampled units. These groups are 
the domains of interest. Often in practice, there are no 
auxiliary totals available for these domains. 

To increase the precision of the domain estimates, it is 
important to use the auxiliary totals known for the 
administrative SIC groups. This is particularly critical 
for small SIC groups which may contain few sampled 
units. Although the domains do not coincide with the 
administrative groups, we can use (2.2) to produce 
design consistent estimates that maximize the use of 
auxiliary information. 

For example, suppose the domains are defined at the 
four digit level of the Standard Industrial Classification 
(SIC4 groups). Let d indicate the current or actual SIC4 
group or domain for d = 1 , 2  ... . .  D and let j indicate the 
administrative SIC4 group for j = 1 , 2  ... . .  J where J = D .  

That is, j denotes the administrative or old SIC4 code 
and d the actual or new SIC4 code. The population U 
can be viewed as being partitioned into administrative 
groups U s , j = 1 , 2  ... . .  J for which auxiliary information is 

available and into domains of interest U d , d = 1 , 2  ... . .  D 

for which there is no auxiliary information. Although 
both groupings are at the SIC4 level, the U s and U d 

represent different partitions of the units in U. 

L e t  j = j ( d )  be the old code for a sampling unit with 

new code d. Typically, old and new codes agree for a 
majority of units. For example, 80% of the units in 
domain U d may be also in the corresponding 

administrative group USed) and the remaining 20% may 

be part of other administrative groups. 

To illustrate our estimator for this type of problem, 
suppose x is a scalar positive auxiliary variable with a 
strong linear relation to y roughly through the origin. 
Let us consider two simple cases. In case 1 below, 
auxiliary information is only available for the entire 
population. For domain estimation, this is not as strong 
as having auxiliary information at a lower level. To 
improve on this, case 2 assumes information available is 
available only for the administrative domains. 

Case 1 The only known auxiliary total is X = ~ u  X k " 

With c k = x k in (1.1) the g-weights are g k  "-  X / f ( ~  for 

all k. To estimate the total Y of the whole population of 
establishments, these weights give the classical ratio 
estimator 

At this level, we can count on high precision because of 
the strong linear relationship between y and x. For the 
domain total i 'd,  the same weights lead to the estimator 

as the estimator of the total i'd of the domain. Its 

precision is often inadequate. 

• Case 2 To improve on the domain estimates, suppose 
we use the administrative groups to define J calibration 

groups Us with known totals X j  = ~-~uj xk  ' j = 1 , 2  .....  J .  

? 

In (1.1), we define x k = (6lk X k . . . .  6jk X k . . . .  8Jk X k )  

where ~Sjk is the calibration group identifier. With 

ck = xk, the calibration produces the weights 

w k = a k g k  with gk = X s / f ( : ~  for all k ~ s s  where 

s s = s n U s . The part of the sample s falling in domain 

U d is given by s d = s n U  d .  Now s d is further 

subdivided into the sample cells S dS = S d ~ U s . For cell 

S dS we use the notation I~d~ = ~ s ,  , a k y  k and 

d~ = ~s , j  akXk • NOW different design consistent 

estimators arise from (2.2) depending on how we 

0 We assume specify the regression groups and w k . 

throughout that w k = a k and c k = c k = x k . 

0 Case2a Let w k = w  k. Then the regression fit is 

superfluous. The estimator of the domain total i'd 

obtained from (2.2) is 

= 

and the corresponding estimator of the entire population 
total Y is 

~,(2a) ,_, ~_~jJ=l (Xj l ~,jlt ) ~zjn 
which is usually described in the literature as a 
post-stratified ratio estimator, the calibration groups 
being viewed as the post-strata. 

o X / X ~  Let each domain Ud be Case2b Let wk =ak 

a regression group. The fitted slope for U d is 

Bd = t ' d ~ / f ~ d ~ "  From (2.2), Yd is estimated as 
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{Z,'__, ?., (5.1) 

The corresponding estimator of the entire population 
total Y is 

o ( X / X )  Let there be a single Case2c Let w~ = a  k ~ . 

regression group equal to the entire population U. We 

get the pooled slope estimate /7 = I ~ / X ~  . Then from 

(2.2), i'd is estimated by 

+.?: {Z,'__l ?., 
and the corresponding estimator of the entire population 
total Y is the classical ratio estimator 

:(,/s.)e. 
Other possibilities exist for defining the regression 
groups. One would be to use each of the calibration 
groups U s as a regression group. We make some 

observations on these results. 

Remark 5.1 Since the calibration in case 2 takes place 

at the level of the domains of interest, all of I~d ~2a) , 

I)d t2b) and "a~t2c) should give considerably improved 

v(~) for which calibration is at a precision compared to -a 

higher level. An interesting feature of I~ 2~) is that 

although it capitalizes on the detailed information X s , 

the corresponding entire population estimate 1 ~t2c) 
depends neither on the calibration groups nor on the 

domains of interest. By contrast, y(2b) depends on the 
particular set of domains U d , d=1,2 ..... D. 

Remark 5.2 One expects only modest differences in 

precision between I~d (2") , I)d (~-b) and "d~(2c) because in all 

three cases calibration is done at the same level. 

Remark 5.3 Note that case 1 and case 2c estimators 
agree at the population level so that 

~(2c) .__ ]~(1)..__ (X/~ l t )  ]~x, although they disagree at the 

domain level, where i3(2c) is usually a considerable ~d 

improvement on +.:,: 

Remark 5.4 There are alternatives to Yd (2") , l;d (2b) and 

I3d(2c) that a survey analyst may be lead to consider. 

(i) The direct approach is to use the Horvitz-Thompson 
estimator for the domain Ud, 

)'a~ =~_~s akYk = )'d~ 

This is a simple unbiased approach but not very 
resourceful. It does not exploit the considerable 
information given by the known totals for the groups 
uj. 

(ii) The analyst who senses that the information for the 
groups is important might reason as follows. Let us 
identify the administrative SIC4 group j (d)  

corresponding to domain d, and let us use the known 

total for that group, XS(d) = ~S(d) Xk, to form the 

regression estimator 

)'d =Xj,d)Bd + Z s  wO(yk--XkBd) 

where /Td is as in case 2b. The motivation here is to use 

Xsta) as a proxy for X d if one is willing to ignore the 

fact that group Ustd) does not exactly coincide with the 
0 domain of interest U a . For example, with w k = a k , 

this leads to 

I; d = Xs(d)b # (5.2) 

which is a synthetic estimator. However, it is a biased 
estimator of Ya because X jCd) and X a differ by an 

unknown amount which may be quite large. In most 
situations, the administrative group total X sea) cannot 

be taken as a proxy for the domain total X a . If we 

compare the mean square error of (5.1) and (5.2), the 
reduction in variance realized by (5.2) is more than 
offset by the increase in the square of the bias resulting 
from the difference between Xi(d) and Xd. 
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