
R E S A M P L I N G  M E T H O D S  F O R  C O M P L E X  S U R V E Y S  

J.N.K. Rao, Carleton University 
Department of Mathematics and Statistics, Ottawa, Canada KIS 5B6 

Key words:  Balanced repeated replication, jack- 
knife, post-stratification. 

Abs t r ac t  Resampling methods for variance and 
confidence interval estimation include the jack- 
knife, balanced repeated replication (BtUt) and 
the bootstrap. In this article, we present some 
recent theoretical work on the jackknife with 
post-stratified weights and Fay's modification 
of B RR, under stratified multistage sampling. 

1. Introduction 
Standard sampling theory is largely devoted 

to estimation of mean square error (MSE) of 
unbiased or consistent estimators Y of a popu- 
lation total Y. An estimator of MSE, or a vari- 
ance estimator, provides us with a measure of 
uncertainty in the estimator ]7. Also, the stan- 
dard error of Y (i.e., square root of estimated 
MSE), denoted by s(Y), may be used to con- 
struct normal theory confidence intervals {]Y 4- 
z~/2s(~")}, where za/2 is the upper ~/2-point 
of a N(0, 1) variable. These intervals cover the 
true total Y with a probability of approximately 
1 - a in large samples. 

For nonlinear statistics 0, such as a post- 
stratified estimator of Y, or ratio, regression 
and correlation coefficients, the well-known 
Taylor linearization method is often used (see 
Binder, 1983 for some general results). Resam- 
piing methods, such as the jackknife, balanced 
repeated replication (BRR) and the bootstrap 
are also being increasingly used. In fact, sev- 
eral agencies in the U.S.A. and Canada have 
adopted the jackknife or the BRR for variance 
estimation in large-scale surveys. Resampling 
methods employ a single standard error for- 
mula for all statistics 0, unlike the linearization 
method which requires the derivation of a sep- 
arate formula for each statistic 0. Moreover, 
linearization can become cumbersome in han- 
dling post stratification and nonresponse ad- 
justments, whereas it is relatively straightfor- 
ward with resampling methods. For example, 

current software packages using the lineariza- 
tion (e.g., SUDAN and PC CARP)seem to 
handle only totals, means and ratios under post- 
stratification. As a result, they cannot handle 
statistical analyses such as linear regression and 
logistic regression with post-stratified weights, 
unlike resampling software such as WESREG 
and WESLOG developed by WESTAT. 

l~ao, Wu and Yue (1992) provide a review 
of some recent work on resampling methods for 
complex surveys. In this article, we supplement 
their review by providing some new theoretical 
results. In particular, we study the jackknife 
with post-stratified weights and Fay's modifi- 
cation of B ttR under stratified multistage sam- 
pling. For simplicity, we assume complete re- 
sponse on all items. 

2. Stratified Multistage Sampling 
Large-scale surveys often employ stratified 

multistage designs with large number of strata 
L, and relatively few primary sampling units 
(or clusters), nh(>_ 2), sampled within each stra- 
tum. We assume that subsampling within sam- 
pled dusters is performed to ensure unbiased 
estimation of cluster totals, ]"hi, i = 1 , . . . ,  n h; 
h = 1 , . . . , L .  

From the specification of the sampling de- 
sign, basic weights Whik(> 0) attached to the 
sample elements (ultimate units) hik are ob- 
tained. Using these basic weights, an unbiased 
estimator of the total Y is of the form 

? =  wh,kYh k, (2.1) 
(hik)es 

where s is the sample of dements and Yhik is the 
value of the characteristic of interest associated 
with (hik). 

It is a common practice to sample clusters 
without replacement with probabilities propor- 
tional to sizes (pps). However, at the stage of 
variance estimation, the calculation are greatly 
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simplified by treating the sample as if the clus- 
ters are sampled with replacement. This ap- 
proximation generally leads to overestimation 
of variance of Y, but the relative bias will be 
small if the first-stage sampling fractions are 
not large. 

An estimator of variance of Y is simply 
given by 

L 1 nh 

var( I2) -  Z n h ( n h -  1)/~1 (rhi- 'h)= = v(rhi), 
n--1 

(2.2) 
where rhi = ~(nhwhik)Yhik and ~h = n~ 1 ~ rhi. 

k i 
The operator notation v(rai) denotes that var 
(I7") depends only on the rhis. 

Often the basic weights Whik are subjected 
to post-stratification adjustment to ensure cbn- 
sistency with known totals of post-stratification 
variables. In the case of a single post-stratifier, 
the weights whik are ratio-adjusted to known 
population counts (e.g., projected census age- 
sex counts). Suppose the population is parti- 
tioned into C post-strata with known popula- 
tion counts ~M, c = 1 , . . . ,  C. We use the pre- 
script c to denote post-strata. An estimator of 
M~ is 

°M= Z 
(hik)~,o 

where es is the set of sample elements belonging 
to c-th post-stratum. Similarly, an estimator of 
the post-stratum total eY is 

cY = E WhikYhik. 
( h i k ) E  , s  

Using cI~ and c!Q, we obtain a post-stratified 
estimator of Y as 

2p.  = 
c 

which may be rewritten as 

c ( h i k ) E , s  

where cWhik = Whik(cM/cl~) is the ratio- ad- 
justed weight for (hik) E cs. If Yhik is taken as 

the indicator variable for a post-stratum, say c, 
then ]2p, = cM, thus ensuring consistency with 
the known total eM. 

A customary Taylor linearization variance 
estimator is given by (2.2) with rhi changed to 

c k E c s  

where e e h i k  = Y h i k -  c]~'/el ~/" for  the k-th ele- 
ment in the (hi)-th cluster belonging to cs; i.e., 

va,r(1~p.) - v(~hi). (2.4) 

Rao (1985) proposed a "robust" linearization 
variance estimator using the ratio-adjusted 
weights eWhik" 

varn(lYp,) = v(r~i), (2.5) 

where 

c k E ~ s  

In the special case of simple random sampling, 
(2.5) reduces to a conditionally valid variance 
estimator, given the post-strata sample sizes on, 
unlike the customary variance estimator (2.4). 
Sgrndal, Swensson and Wretman (1989) justify 
(2.5) under a model-assisted frame work appro- 
priate for unistage sampling. In the context 
of ratio estimation under a model-dependent 
framework, Royall and Cumberland (1981) 
demonstrated the "robustness" of variance es- 
timators of the form (2.5) with C = 1 and the 
associated jackknife variance estimators. 

To handle two or more post-stratifiers with 
known marginal population counts, the basic 
weights are "calibrated" through generalized re- 
gression as in the Canadian Labour Force Sur- 
vey. Deville and Sgrndal (1992) develop a fam- 
ily of calibration estimators that includes the 
generalized regression estimator. 

Using indicator auxiliary variables to de- 
note the categories of post-stratifiers, a gener- 
alized regression estimator of Y is given by 

= ? + ( x -  
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where X is the vector of population totals of 
auxiliary variables Xhik, X -- ~ WhikXhik 

(hik)Es 
and t~l is the vector of estimated regression co- 
efficients" Whik(aj ) 

in the g-th stratum (j = 1 , . . . , ng ;g  = 1 , . . . ,L ) .  
It is simply obtained from (2.1) by using the 
following weights Whik(gj) in place of Whik: 

B [ 0 
( = 1)]Wuik 

[ WhikXhikYhik]. 
Whik (hik)Es 

It is readily verified that :Kr = X, thus ensuring 
consistency with known totals X. The estima- 
tor Yr may be rewritten as 

(hik)Es 

with " Whi k -- Whikahik~ 

and 

ahik = 1 + X~ikf ik- l (x-  X) 

fik = E WhikVhik 

with 

(hik)Es 

! 
Vhik  = XhikXhi k. 

A customary Taylor linearization variance 
estimator is given by 

var(lTr) = v(rhi) (2.7) 

with rhi = ~(nhWhik)eh ik  and ehik = Y h i k -  
k 

x~ikt~l. Note that t3 may be written as ~ - 1 0  
with 

T~'~ = E ~3hikUhik 
(hik)Es 

and Uhik -- XhikYhik SO that I3 may be com- 
puted using only the formula for the basic esti- 

^ 

mator Y. 

3. Jackknife  wi th  Pos t -S t r a t i f i ca t ion  
To introduce the jackknife method, we first 

consider the estimator ]Y with basic weights 
^ 

Whik. We need to compute the estimator Y(gj) 
for each (gj)  obtained from the sample after 
omitting the data from the j- th sampled cluster 

if (hi) = (g j )  

i fh  = g and i ~ j  

if h i~  g. 
( a . 1 )  

A jackknife variance estimator is then given by 

n ] 
v a r j ( Y ) -  E n9 - 1 9J) - ~ 2 

g=l Rg i=1 
• (3.2) 

For general statistics of the form 0 = g(l~), a 
jackknife variance estimate is simply obtained 
from (3.2) by replacing Y(gj) and Y with 0(gj) = 

g[Y(gJ)] and 0. In the linear case, 0 = l ~, (2.6) 
reduced to the "correct" variance estimator (2.2). 

Turning to the post-stratified estimator ]Tna , 
we need to recalculate the post-stratification 
weights cwhik each time a cluster (gj) is deleted. 
This is done by using the jackknife weights 
Whik(gj) to calculate 

(hik)E =s 

and then using c/14(zj) to get 

cW(hik)9 j " - [ c M / ~ 1 ( u j ) ] w h i k ( u j  ). 

Substituting these post-stratification jackknife 
weights in (2.3) we get l~p°(uj) for each (g j). 
The resulting jackknife variance estimator is 

L n g  

9=1 IZ9 j=l 
( 3 . 3 )  

By assuming that no survey weight Whik is 
disproportionately large as the number of strata, 
L, increases (see Krewski and Rao, 1981), Yung 
and Rao (1994) obtained a linearized version of 
the jackknife variance estimator (3.3) which is 
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identical to Rao's linearization variance estima- 
tor (2.5) (see also Valliant, 1993). In the impor- 
tant special case of rth -- 2 clusters per stratum, 
(3.3) and (2.5) are in fact equal to higher order 
terms, as L increases. This result generalizes 
Rao and Wu's (1985) result for the basic esti- 
mator ]7. It may be noted that no repeated 
sampling arguments are invoked in establishing 
these results, such as e M / e M  "*p 1. 

Since the jackknife variance estimator (3.3) 
is intuitively "robust", the above results sug- 
gest that the lineaxization variance estimator 
(2.5) is also "robust". Computational]y, (2.5) 
is much simpler than (3.3) and can be imple- 
mented using software packages that use lin- 
earization, such as PC CARP and SUDAAN. 
However, as noted in Section 1, current soft- 
ware using linearization cannot handle statis- 
tical analyses with post-stratification weights, 
unlike resampling software. 

VaUiant (1993) proposes a model appro- 
priate for stratified multistage sampling, and 
shows that (2.5) and (3.3) appropriately esti- 
mate the conditional (model) variance. He also 
presents simulation results, using data from the 
U.S. Current Population Survey, that support 
his theory. 

Yung and Rao (1994) also consider a gen- 
eralized regression estimator to handle several 
post-stratifiers, and obtain a jackknife variance 
estimator and its linearized version. For the 
jackknife method we need to recalculate the cal- 
ibration weights w~, k each time a duster (g j )  
is deleted. These weights are given by 

W~ik(gj ) = Whik(gj)ahik(gj) 
with 

and 

' ( x -  x , j ) ,  = 1 + XhikA(gj) ahik(yj) 

AgJ = E Whik(gj)Vhik 
(hik)Es 

Xgj --" E Whik(gj)Xhik" 
(hik)Ea 

Denote the resulting generalized regression es- 
timator as 

?,.(gj) = 
(hik)es 

where ]3(gj) is the vector of estimated regression 
coefficients when (gj)-th cluster is deleted. 

The jackknife variance estimator of Y~ is 

9=1 ng (9J) - j = l  

2 
• ( 3 . 4 )  

Linearizing (3.4), Yung and Rao (1994)obtained 
a robust linearization variance estimator 

= ( 3 . 5 )  

with r~i = ~_,(nhW~,ik)ehik. It is interesting to 
k 

note that (3.5) is similar to the model-assisted 
variance estimator of S~rndal et al. (1989) in 
the context of a superpopulation model appro- 
priate for unistage sampling. 

4. Fay ' s  Modi f i ca t ion  of B la i r  
McCarthy (1969) proposed the method of 

BRR for the important special case of nh "- 2 
clusters per stratum. A set of R balanced half- 
samples (replications) is formed by deleting one 
cluster from the sample in each stratum. This 
set may be defined by an R x L design matrix 
(~,), 1 _< r _< R, 1 _< h _< L with ~[, = +1 
or - 1  according as whether the first or second 
sample cluster in the h-th stratum is in the r- 
th half-sample, and ~ ~[,~;, = 0 for all h ~ h', 

7" 

i.e, the columns of the matrix are orthogonal. 
A minimal set of R balanced half-samples may 
be constructed from Hadamard matrices (L + 
1 <__ R _< L + 4) by choosing any L columns, 
excluding the column of + l~s. 

Let ~(r) be the estimator of 0 obtained from 
the r-th half-sample. Note that O(r) is obtained 
from 0 by changing Whik to 2Whik or 0 according 
as the (hi)-th cluster is selected or not selected 
in the half-sample. (For simplicity, we consider 
only the basic weights Whik). A BRR variance 
estimator of 0 is given by 

R 
1 

= - ( 4 . 1 )  
r--1 

In the linear case, 0 = ] 7, (4.1) reduces to 
the "correct" variance estimator (2.2). Krewski 
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and R, ao (1981) establish the asymptotic con- 
sistency of varBRR(0) for smooth statistics ~J - 
g(Y), as L increases. Sha~ and Wu (1992)and 
Shao and Kao (1994) establish similar results 
for nonsmooth statistics, such as the median 

= xb-1 (1 )  and the low income proportion 

~j = F - a ( . ~ / 2 ) ,  where F( t )  is the estimator of 
the population distribution function F(t):  

/~ ( t )=  ~ Whiki(yhik ~__ t ) /  E Whik" 
(hik)Es (hik)es 

Limited simulation results (Ra~ et al., 1992) 
suggest that  the delete-1 cluster jackknife might 
also perform well for nonsmooth statistics as 
the number of sample elements in a cluster in- 
creases, but no theoretical results are at present 
available. 

A drawback of the BRR variance estimator 
(4.1) is that  occasionally one or more replicate 
estimators 0(~) are undefined due to division by 
zero, e.g., in estimating the ratio of two domain 
totals. Judkins (1990) discusses other disad- 
vantages of BRIt. These disadvantages are pri- 
marily due to sharp perturbation of the weights 
Whik; all weights are either multiplied by 2 or 
by 0. The jackknife avoids these problems by 
only dropping one sample cluster at a time. 

Fay (see Dippo, Fay and Morganstein, 1983, 
Sec.4) proposes a compromise between the stan- 
dard B RR and the jackknife by perturbing the 
weights by 1 + c and 1 - E for the half-sample 
andits  compliment (0 < e _< 1). Thus, 0(r)(E)is 

obtained from ~ by changing Whik to Whik(C) -- 
(1 + E)Wmk if (hik)- th element is selected in the 
r-th half-sample or to Whik(E) = (1 -- E) Whik 
if it is not selected. A modified BRR variance 
estimator is given by 

R 
1 

varBRa(~)(0) = S2 R E[0(~)(E)- -  $]2. (4.2) 
r----1 

Note that  (4.2) reduces to the standard BRR 
variance estimator (4.1) when ~ = 1. 

Rao and Sha~ (1994) obtained the follow- 
ing theoretical results on the modified BRR. 

R e s u l t  1. In the linear case, ~ = ? ,  varBRR(c) 

(?) = for 

N o t e  1. Judkins (1990) also established Result 
1. 

R e s u l t  2. Suppose 0 = g ( ? )  and assume that 
g(-) is continuously differentiable in a neigh- 
bourhood of l?. Then 

lim VarBRR(,)(0)= varL(0), 
e---,0+ 

where varL(0) is the Taylor linearization vari- 
ance estimator of 0. 

N o t e  2 .  Result 2 is similar to the result in 
the i.i.d, case that  the infinitesimal jackknife 
= Taylor linearization (Efron, 1982). 

R e s u l t  2. Consider e = en, a function of n 
satisfying 0 < E,, _< 1 and let ~ = g(Y). Assume 
the following regularity conditions: 

(C.1) max nhiWhik = O(n -1) 
i,k 

(C.2) 0 < liminf[nvar(Y)] 

(C.31 k E l y , ,  - E(yh , ) l  4 
h i nh 

= O ( n - 3 ) ,  

where r~hi is the number of elements sampled 
n h i  

from (hi)-th duster,  Yhi -- ~ YhikWhik, n = 
k--1 

~ nhi, Whik = Whik/No and No is the to- 
h i 

tal number of elements in the population. Fur- 
ther, assume that  g(.) is twice differentiable 
with ~72g(.) ~ 0 in a neighbourhood of Y. Then 

= v rL( ) + 

+ (4.3) 

N o t e  3. C.1 means no survey weight is dis- 
proportionately large. C.3 is a Liapunov-type 
condition on the 2 + ~ moment with ~ = 2. 

N o t e  4. If we choose en 
from (4.3) that 

= n-½, then it follows 

VarBRR(,)(0) = varL(0) -{- Op(n-2),  

i.e., the two variance estimators are closer to 
each other compared to the case of fixed En = e. 

In the case of sample quantils, 0 = ~ -x  (p), 
0 < p < 1. consistency of the modified B RR 
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variance estimator for any fixed s(0 < ~ < 1) 
follows along the lines of Shao and tLao (1994), 

by noting that the weights -(r) t~ ,(r) 
satisfy the following conditions: 

(1) E[  E-(r)~,hik(E)X(Yhik <__ t)J" = F(t) for  any r 
hik 

and t. 

(2) m a x  nhi~O(hri)(E) - -  O(n -1) uniformly in r 
hik 
and E. 

(3)  0 < - _ _hik(e). That is, for any weights sat- 
isfying (1)-(3), the proof in Shao and Rao 
(1994) goes through. Similar result hold 
in the case of low income proportion 0 = 
/~(~//2) for any fixed e(0 < z < 1). 

Judkins (1990) conducted a simulation study 
on the modified BRR. His empirical results sug- 
gest that e in the range of 0.5 to 0.7 is a good 
choice, and that with this choice the modified 
BRR works well for both smooth and nons- 
mooth statistics or when a few degrees of free- 
dom are available for variance estimation. Our 
results provide theoretical support to these em- 
pirical results. Further work on the modified 
Btttt, especially with post-stratified weights, 
would be useful. 

5. Concluding Remarks 
We assumed complete response on all items, 

but both unit and item nonresponse often oc- 
cur in practice. Deterministic or hot deck im- 
putation within imputation classes is often em- 
ployed to handle item nonresponse. It is also 
a common practice to treat the imputed val- 
ues as if they are true values and then compute 
the variance estimates using standard formu- 
las. This procedure, however, could lead to se- 
rious underestimation of true variance when the 
proportion of missing values for an item is ap- 
preciable. Assuming uniform response within 
imputation classes, Rao and Shao (1992) ob- 
tained a consistent jackknife variance estimator 
for stratified multistage surveys by first adjust- 
ing the imputed values for each pseudo-replicate 

• and then applying the standard jackknife for- 
mula. R.ao (1993) obtained linearization ver- 
sions of this jackknife variance estimator under 
different imputation schemes. The above re- 
sults apply only to the basic weights, Whi k. A 

Ph.D. student, W. Yung, is currently extend- 
ing these results to the important case of post- 
stratification cutting across imputation classes. 
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