
M A R K O V  M O D E L S  F O R  L O N G I T U D I N A L  DATA F R O M  C O M P L E X  S A M P L E S  

Laurel A. Beckett, Rush-Presbyterian-St. Luke's; Dwight B. Brock, National Institute on Aging; 
Paul A. Scherr, Centers for Disease Control; Carlos Mendes de Leon, Yale University 

Laurel A. Beckett, Center for Re.search on Health and Aging, 710 S. Paulina, Chicago, IL 60612 

KEY WORDS: pseudo MLE, transition models, 
logistic regression, aging 

INTRODUCTION:  Three practical aspects of re- 
cent epidemiologic research have led to the use of 
complex survey designs for long-term observational 
studies. First, policy development may require 
valid estimates for subgroups such as minorities or 
the very old, leading to stratified designs. Second, 
the statistical power in some studies may depend 
on the number of prevalent or incident cases iden- 
tified, suggesting the use of two-phase designs that 
oversample from high-risk subgroups identified in 
the first phase. Finally, clustering may be used to 
reduce cost. 

Recent years have seen considerable research 
in statistical methods for longitudinal data anal- 
ysis. An overview was given in a double issue of 
Statistics in Medicine devoted to longitudinal data 
[1988]. The complex sampling field has undergone 
an expansion parallel to that for longitudinal data 
analysis; a technical monograph by Skinner, Holt, 
and Smith contains a review of the theoretical is- 
sues and an extensive bibliography [1989]. The 
linkage between complex sampling and longitudinal 
studies, however, is still in its early development. 
JNK Ra~ has noted the perils of ignoring the sam- 
piing plan in statistical analysis [1986], while other 
authors have argued that in some regression set- 
tings, adjustment using regression coefficients may 
suffice rather than a full likelihood-based approach 
[Korn and Graubard, 1991]. This paper exam- 
ines the impact of different approaches to handling 
the sampling design in fitting a Markov transition 
model to longitudinal data collected in a large-scale 
aging study. 

A MARKOV TRANSITION MODEL: Longi- 
tudinal studies can be used both to provide descrip- 
tions of change and to assess possible predictors of 
change. If the individuals in the study have been 
characterized by the presence or absence of a con- 
dition which may change over time, then transition 
models are a natural way to describe this change. 
Muenz and Rubinstein proposed a Markov model 
using a logistic link function to characterize the 
probability of transitions between two states as a 
function of covariates [1985]. A sample of n indi- 

viduals is observed at up to k equally spaced times, 
although some individuals may have missing data 
at some time observation times. The individual is 
recorded as being in state O, state 1, or missing at 
each time. In addition, a set of p fixed covariates 
(x 1 , . . . ,  xp) is observed for each individual, with 
no missing eovariates. The underlying process is 
assumed to be memoryless and stationary. The 
model has separate logistic regression equations for 
the probability of transitions from state 0 to state 
1, P01, and the probability of transitions from state 
1 to state 1, Pll: 

P01 = (1 + e-(b°+~l+'"+b'~'))  -1 1 

P11 = (I + e-(d°+d'"+'"+' / ' "))  - I  , 2 

with Pil = 1 -  Pi0. 

This model assumes that a unit increase in one 
of the eovariates leads to a constant change in the 
log odds of a transition, regardless of the values of 
other eovariates. Transition probabilities outside 
the range 0 to 1 are not permitted. Finally, the 
model permits direct comparison of the estimated 
effects of covariates to the results of other studies 
using logistic regression or Mantel-Haenszel meth- 
ods. 

P O I N T  ESTIMATION: Muenz and Rubinstein 
proposed estimation of the logistic regression coeffi- 
cients by maximum likelihood. If there are no gaps 
between observations (all successive pairs are ex- 
actly one time unit apart rather than two or more), 
the likelihood factors into two terms, one involving 
transitions from state 0 and depending on the bk, 
and the other involving transitions from state 1 and 
depending on the dk. The contribution of individ- 
ual q to the log likelihood can then be written: 

n p 

q : l  k : l  

+ (m,(O0) + m,(01))log Poo 
p 

+ m,(1o) 
k : l  

+ (rnq(10) + mq(l l ) ) log P10] 

where mq(ij) is the number of transitions individ- 
ual q experienced from i to j. The complete log 
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ual q experienced from i to j. The complete log 
likelihood is given by 

log L = E uq. 4 
q=l 

Maximum likelihood estimates (MLEs) of b and 
d can be obtained by finding the roots of equation 
(4) using the usual logistic regression algorithms, 
provided that both the total number of transitions 
from state 0 and the total number of transitions 
from state 1 exceed p+2 and that the design matrix 
of the covariates has full rank. Since this model has 
a general exponential family form, MLEs are best 
asymptotically normal. Moreover, the standard er- 
rors of the MLEs can be estimated for large n using 
the information matrix. In addition, if functions of 
the parameters such as estimated transition prob- 
abilities for specific age-sex combinations are of in- 
terest, the corresponding functions of the MLEs are 
also maximum likelihood. 

The Markov model approach described so far 
could be implemented using existing software for 
logistic regression, provided each transition was 
handled as a separate observation. The situation 
addressed in this paper involves two complications: 
first, complex sampling rather than simple random 
sampling, and second, gaps in the data. We begin 
by comparing three approaches to estimation in the 
complex sample setting without gaps. These meth- 
ods are compared in an example involving physical 
function in a stratified sample of persons 65 and 
older in New Haven, CT. We then explore possible 
modifications when gaps are present. 

ESTIMATION FROM C O M P L E X  SAMPLE 
DESIGNS: Three possible approaches to param- 
eter estimation in the complex sample setting are 
considered here. The first approach is to ignore 
the sampling design and to obtain MLEs of the re- 
gression parameters of the Markov model by the 
procedure described in the previous section, as if 
the study were based on a simple random sample. 
The parameter estimates are the roots of equation 
(4), and their covariance matrix can be estimated 
by the inverse information matrix using the sec- 
ond partial derivatives. There has been extensive 
discussion in the statistical literature about the ap- 
propriateness of this approach in regression models 
in the complex sample setting, the degree to which 
parameter estimates may be misleading, and the 
likely underestimation of the standard errors. Du- 
Mouchel and Duncan [1983] gave an overview for 
linear regression; similar considerations apply for 
logistic regression. 

The second approach is to use the unweighted 
MLE procedure described in the previous section, 
but to add covariates such as stratum that are re- 
lated to the sampling design, thus adjusting by re- 
gression for the design. Korn and Graubard [1991] 
suggested that this adjusts adequately for the sam- 
pling design in many cases. This approach is less 
appropriate when each stratum contains a few large 
clusters with substantial within-cluster correlation. 
The design effect would then be too large and 
would led to biases in estimating variances. They 
also stated that a general sufficient condition under 
which the weights would have little effect on bias of 
the estimates is" "The distribution of the outcome 
(disease) for given levels of the risk factor and co- 
variates does not depend on any variables used in 
the sampling design or used to adjust for nonre- 
sponse." A weighted analysis may be less efficient 
if the stratum weights differ greatly, increasing the 
standard errors. 

The third approach is to adjust using sampling 
weights, via pseudo maximum likelihood estima- 
tion. Skinner [1989] reviewed the problem of gener- 
alizing maximum likelihood estimation to complex 
samples in the general regression setting and noted 
that the full MLE would require many assumptions 
and would likely give a very complicated expres- 
sion for the exact likelihood. An alternative is to 
define as the target parameter the so-called census 
coefficient, the solution of the population version 
of equation (4), 

N 
T(b, d) = E u,(b, d) = O. 5 

q=1 

The pseudo MLE is defined to be the solution of 
an appropriately weighted estimate of equation (5), 
with the individual contributions u~ to the score 
function calculated as in equation (3): 

q=l 

The pseudo MLE is a consistent estimator of 
the census coefficient, and it is asymptotically nor- 
mal in the logistic regression setting. If equal 
weights are used, the pseudo MLE reduces to the 
usual MLE. 

The most difficult technical problem in the 
complex sample setting is to obtain valid estimates 
of the sampling variances of the parameter esti- 
mates. In the simple random sample case, the co- 
variance matrix of the parameter estimates can be 
estimated using the information matrix: 

d) = d)lOb, d 7 
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where I/~ is the unweighted version of equation (6). 
The information matrix, even when weighted, is 
not the correct variance if the pseudo MLE is not 
the exact MLE [Skinner 1989]. An alternative ap- 
proach is to use a Taylor series approximation for 
the sampling variance. This linear approximation 
is consistent under broad assumptions. The gen- 
eral form of the linearization estimator for regres- 
sion models is given by 

d) = z - '  V(e)z 

where 1-1 is given by equation (7). 

H n& 

- - V(T) = E nh- 1 
h = l  d = l  

where z ~  is the sum of the wtu t  across sample 
units t in primary sampling unit d within stratum 
h. 

Details of this approach have been given for 
the logistic regression model by Roberts, Rao and 
Kumar [1987] and Chambless and Boyle [1985] and 
implemented in PC CARP [1986]. SAS PROC LO- 
GIST [1986] has a weighted option that would give 
the pseudo MLE if the correct weights were used, 
but would not give the correct standard errors, 
since it uses the information matrix rather than 
a linearized variance estimator. 

DuMouchel and Duncan [1983] took an inter- 
mediate position, suggesting that whether or not to 
use sampling weights in linear regression depends 
on the precise definition of the target parameter. 
They argued that, while the pseudo MLE is consis- 
tent for the census coefficient, this parameter may 
be difficult to interpret or misleading, especially in 
subgroups. On the other hand, the assumptions 
required for the unweighted estimates to be valid 
must be carefully checked and may require extra 
predictors, transformations, or interactions in the 
model. 

COMPARISON IN AN EXAMPLE:  The ap- 
proaches described above were compared in a prac- 
tical application, using 6 years of physical function 
data from the New Haven site of the Established 
Populations for Epidemiologic Studies in the El- 
derly (EPESE), sponsored by the National Insti- 
tute on Aging [Cornoni-Huntley et al. 1986]. A 
sample of 2812 persons 65 and older was selected, 
stratified by sex and by three types of housing. 
A higher proportion of males was sampled than 
of females, and higher proportions of people from 
public housing and from private housirig for the el- 
derly were sampled than from general community 

housing. The frame was s 1979 utilities listing, 
and clusters of 12 consecutive housing units were 
chosen. The outcome variable for this study was 
self-reported impairment in mobility, s composite 
based on self-report of problems in any of four ac- 
tivities: transferring from a bed to a chair, walking 
across a small room, climbing stairs, or walking 
half s mile. Covariates were male sex, age, and s 
quadratic term for age. 

We compared three methods for estimating the 
effect of the covariates on transitions to impaired 
mobility and recovery from impairment. Only re- 
sults for transitions to impairment are presented 
here, but the results were similar for recovery. The 
first method was the usual unweighted MLE, ignor- 
ing the complex sample design. The second method 
was pseudo MLE, taking the design into account. 
The third method was the usual unweighted MLE, 
with indicators added for two of the three housing 
types in an effort to adjust for the sampling design. 
The data set was restricted to 1450 subjects with 
complete data at all 6 interviews, to avoid prob- 
lems of gaps in the data, and commercial software 
was used (SAS PROC LOGIST and PC CARP). 

F igure  1. C o m p a r i s o n  of logist ic regress ion  
coefficients f rom t h r e e  approaches  to han-  
dl ing complex  sampl ing  in the  New Haven  
E P E S E  data:  u n w e i g h t e d  ( ignor ing  sam- 
pl ing) ,  u n w e i g h t e d  ( ad jus t ing  us ing hous-  
ing s t r a t u m  in regress ion) ,  we igh ted  (pseudo  
MLE) .  
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The unweighted MLEs of the logistic regression 
parameters differed consistently from the weighted 
pseudo MLEs (Figure 1). Compared to the pseudo 
MLEs, the unweighted estimates underestimated 
the quadratic effect of age, suggesting a less dra- 
matic increase in the incidence of new impair- 
ment in mobility with increasing age. The un- 
weighted but regression-adjusted estimates gave 
coefficients closer to the pseudo MLEs for the ef- 
fects of age, but tended to underestimate the pro- 
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tective effect of male sex on incidence of impaired 
mobility. The estimated probabilities of incident 
impairment, calculated from the logistic regres- 
sion coefficients, also showed systematic differences 
across methods, with the unweighted approaches 
overestimating incidence and underestimating re- 
covery, compared to the pseudo MLE (results not 
shown here). These differences likely reflect the 
oversampling of males, the poor, and the very old. 

Figure 2 shows the corresponding standard er- 
ror estimates for each of the three methods. The 
estimated standard errors were substantially lower 
for both the unweighted and regression-adjusted 
MLEs than for the weighted pseudo MLEs (Figure 
2). These biases would lead to coverage below the 
nominal level for confidence intervals and higher 
than nominal Type I error in hypothesis tests. 

F igure  2. C o m p a r i s o n  of e s t i m a t e d  s t a n d a r d  
errors  of coefficients for unweigh ted ,  regres-  
sion ad jus t ed ,  and  pseudo  MLE.  
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Thus, in this example it appears to be impor- 
tant to adjust for the sample design by appropri- 
ate weighted estimates with the corresponding lin- 
earized variance estimator. 

ESTIMATION WHEN T H E R E  ARE GAPS 
IN THE DATA: The likelihood formulas of equa- 
tions (1) and (2), and hence the log likelihood for- 
mula of equation (3), do not give the correct for- 
mula for transitions across gaps of more than one 
time interval. The correct likelihood then would 
be the sum of the likelihoods of all possible paths. 
These likelihoods, log likelihoods, and the first and 
second derivatives can be calculated reeursively, as 
shown in Muenz and Rubinstein [1985] and MLEs 
obtained. Similarly, in the complex sample setting, 
pseudo MLEs can be obtained by taking a weighted 
sum of the scores after calculating them recursively. 

The commercial software available for obtain- 
ing pseudo MLEs for logistic regression does not 
allow for calculating likelihoods recursively across 

gaps. It is natural, then, to ask how much precision 
is lost by modifying the data set to exclude gaps 
of longer than one time period or by treating these 
gaps as if they lasted only one time period, so that 
commercial software can still be used. 

We compared two different pseudo MLE ap- 
proaches using commercial software with the full, 
reeursion-based method pseudo MLE estimates of 
the Marker model parameters using a Fortran pro- 
gram developed for this grant. The complete New 
Haven data set of 2812 people was used. In the first 
approach, all transitions with gaps (one or more 
years of interview data missing between years with 
known mobility status) were omitted, and only one 
year transitions were used. In the second approach, 
all transitions were used, regardless of how many 
years had intervened between self reports of mobil- 
ity status. The reeursion-based pseudo MLE also 
used all transitions, but the likelihood was calcu- 
lated reeursively across all possible pathways dur- 
ing years with no recorded interview data. 

F igure  3. C o m p a r i s o n  of r ea ress ion  coettl- 
eients for t h r ee  m e t h o d s  of h a n d l | n 8  gaps in 
d a t a :  using only one year  t r ans i t ions ,  pre-  
t e n d i n g  all t r ans i t ions  were  exac t ly  1 year ,  
and  e s t i m a t i n g  l ikel ihood f rom recurs lon .  
All e s t ima te s  were  pseudo  MLEs.  
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Omitting all but the one-year transitions led 
to very different estimates of the logistic regression 
coefficients (Figure 3), as well as underestimates 
of the incidence of impaired mobility and overesti- 
mates of the probability of recovery (not shown). 
This bias was a direct result of the tendency for 
longer gaps to be more likely to occur in people 
with health problems. Moreover, the reduction in 
effective sample size led to a substantial increase in 
standard errors (Figure 4). Including all gaps but 
treating them as if they lasted only one year gave 
standard error estimates closer to the results us- 
ing the full reeursive equations, but the parameter 
estimates still showed some differences (Figures 3 
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and 4). 

Figure 4. Comparison of es t imated s tandard  
errors for three  methods  of handling gaps in 
the data. 
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DISCUSSION: 

This example showed that adjustment for the 
sampling design can make substantial differences 
both in parameter estimates and in standard er- 
rors for a longitudinal model. Failure to adjust ade- 
quately led to substantial biases in inferences about 
the population-wide effects of covariates on proba- 
bilities of change. Moreover, attempts to adjust 
by regression alone, without using the weighted 
pseudo MLE, did not adequately reflect the uncer- 
tainties of inference from the complex sample. The 
sampling design for the New Haven EPESE site 
had sampling proportions differing greatly across 
strata and moderate sized clusters within each sex- 
housing stratum; the effects would likely not have 
been so pronounced in a design closer to a simple 
random sample. Finally, while existing software 
could in principle be used for this Markov model by 
omitting some transitions or by ignoring the length 
of the gap, the results are sufficiently different from 
the full model to encourage using the full recursive 
likelihood when possible. 
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