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SUMMARY 

The errors may be accumulated through the 
process of obtaining data, including time 
correlations. We define a multiplicative effect 
modeland, and obtain a variance of data with time 
correlation, sampling and subject errors. This 
variance accounts are applied to longitudinal data. 

INTRODUCTION 

NCHS collects data from each sampled person 
for a number of years in follow-up studies, and 
repeated responses or measurements form one 
person may be correlated. Other example is that, 
since deaths occur in a same population, 
death rates may be correlated during consecutive 
years. Sampling errors may arise from NCHS 
sample data. 

Liang and Scott (1986)corrected longitudinal 
data for time correlation. Thall and Vail (1990), 
Morton (1987) and Firth and Harris (1991) used 
multiplicative model to correct time correlation or 
other errors. 

We assume that each y~ has the density of 

f(yi)=exp{(yi0i-b(0i))/a(a 2) + c(y~,a(a2)}. 

The first two moments of y~ are given by 
E(y0=b'(0~) and var(y0=b"(0i)a(a2), which is the 
product of two function, the variance function 
b"(0~) and the dispersion function a(aZ), a(a'-) 
is o 2 for normal density. 

The quasi-likelihood may be applied to derive 
regression parameter/3 from data y~, ..., y~ . . . . .  
YM in a model defined by E(y0 = #~(/3), and 
cov(y0 = V~(/z~), where the mean/z~ and variance 
Vi are known. The mean/z~ is often determined by 
known independent variables x~,, . . . ,  X~p, possibly 
by a model 

g(g ) = + , . . . ,  + 

in which the link function g is known. An 
estimate of /3 is obtained by solving quasi- 
likelihood equations for each y. 
Let 0/z/0/3 = D. 

(1.1) U(/z)-- D T V"(y-#) = 0. 

When V is a diagonal matrix, (1.1) is the same as 
the weighted least square case, but the variance- 
covariance matrix V is rarely a diagonal matrix. 

In Section 2, a multiplicative effect model is 
defined, and the covariance V is obtained from this 
model. The point estimation is discussed in 
Section 3 when log link function for g(/3) is 
assumed. In Section 4, we analyze NCHS sample 
rate based on this V(/x). 

2 MULTIPLICATIVE MODEL 

Let z3~j, and Z2~k indicate the effects of 
subject, and sampling, respectively, and z,~k, 
repeated measurements or responses (1 < i < M), 
(1 < j <  N~), (1 < k <  D~), and (1 < t <  T). M is 
the number of data sets, and the M monthly data 
are assumed to be independent. N~ is the units in 
the i-th data set, D~ the number of subjects with 
symptom among N~ units, and T the number of 
time points for repeated measurements. 

The variables z3~j, Zz~k, and Zlikt may be 
continuous or discrete. The subscript numbers 
indicate respective level. The level 1 is the lowest 
level and the level 3 the highest. Let weight wi be 
the known numbers. Define a multiplicative model 

(2.1) Yijkt ~--- Wi Z3ij Z2ik Zlikt" 

Suppose that Z3ij, Z2ik, and z~k, have mean #3, 
/~2, and /z~,, and variance e3j, eZk, and fflktt', 

respectively. The (jkt, j 'k ' t ' )- th element of 
covariance matrix for Y~jk, is 
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(2.2) wi 2{e~k.,E(zzikzzik,)E(z3iJz3iJ.) 

h-/Zt t,l/,~t,ez~,E(z3ijZ3ij, ) -t-/~,~ ul, ~ t,,l/,22e3jj, }, 

where e,~,,. = Cov(z~, z~,.) for the two 
repeated observations on the k-th subject. If 
z3~ and Zztk are all independent with common 
variance, e3 and ez respectively, (2.2) can be 
written as 

(2.2a) w~ z {e,k,.(e2 + /,2z)(e3 + /z3 ~) 

-t" ][Llt#l t, 1~2(e3"1- ~t/,3")-t- ]'£1t~lt' #2-~3}" 

It is interesting to compare above results with 
the variances of additive model, 

Yijkt = ~ijkt "+" Z3ij "1= Z2ik "1" Zlijkt, 

would be the same as variance (2.2a), replacing 
Wi 2 elktt,(e2 + ~22)(e3 + ~,32) with var(z3ij), 
Wi 2 ~/'lt~lt' e2(e3j"~"~3j 2) with var(z2ik), and wi 2 
p,~t#~t./z= 2 e3 with var(z~u~,). The mean of additive 
Y0R, iS (/,tUk ,+/*~t+/*2+/*3), while the mean of 
multiplicative model is/ZUk ,. 

Denote the relative variances C3 = e3//,32, 
C= = e2//,= 2, and relative covariance 

Clktt' = elkt, ' /(#l, ~'lt')" Let E(Yijkt)=Wip,~tp,-,,u3 
= /~j~,(/3). (2.2a) can be expressed as 

(2.3) ~ijkt~ijkt,{Clktt,(C2 -I- 1)(C3 + 1) + C2(C3 + 1) + C3}. 

We may use variable Yikt = ~(j=l,Ni) WiZ3ijZ2ikZlikt to 
simplify covariance structure. ~k, = N~ w~/x2~3,, 
and the (kt, kt')-th element of V~ is 

(2.4)#~kt#~kt.{C,k,.(C2 + 1)(C3 + 1) + C,_(C3 + I) + C3}/N 

The inverse of (2.4) can be easily obtained as C~k,,. 
is specified. For instance, if Z~R, follow the 
multinomial distribution, then C,,,. = (1//,~, - 1) for 
t = t' and Clt t, = -1 for t # t'. 

Vi = Di + ci u u' 

where D~ is the diagonal, ikt-th element 
~k,2{(C:+ 1)(C3+ 1)//Zl, + C~(C3+ 1)+C3}/N~ and 
the vector/z, ikt-th element/Z~k,, 
c~=(I/N0{-(Cz+ 1)(C3+ 1)+ C2(C3+ 1) +C3}. 

Vi t = Di 1 + d i u* u*' 

d~=c~[l  -t- ciNi]~t((C2-+- 1 ) (C3+  1)//z~t 
-F" C2(C 3 + 1) + C31 1, 

and u* is the vector, t-th element 
N~[(C2 + 1)(C3 + l)//z~, + C2(C3 + 1) + C31". 

of 

Example 1 

Let the top level 3 is the subject effect 
z3~j = 1 if the j-th person has a condition and z3o 
= 0 otherwise. Its mean is /,3 and variance e3. 
The level 2 is the sampling of d~ out of D~ persons 
with a condition. Let zzik = 1 if the k-th person is 
sampled among the subjects with symptom, and 
z2~k = 0 otherwise. Its mean is ~2 and variance e2. 

Depending on the type of sampling method, the 
mean and variance are determined. 

The level 1 is the time effect. Each of d~ 
sample units is measured or observed over all time 
points except random missing, and these 
observations are correlated. Let Z~kt = 1 if the 
k-th sampled unit is still have symptom at the t-th 
time with m e a n / ~  and variance e~k,, and Z~kt = 0 
otherwise. 

The variable Z~R, of time effect arise for the 
original units only when the previous two random 
events happened. For instance, the time effects 
arise only if the subject is sampled after this 
subject found to have a symptom. 

The second and third level variables are all 
independent, and the first level variables of 
repeated measurements for each subject are 
correlated. When the distribution is not specified 
for any of these variables, V~ is already given in 
(2.2). 

However, if the second and third level 
variables were binomial, then the (kt, kt')-th 
element of V~ would be 

(2.5) N~w~Z{e~,,/z2/z3 + #~,#~,,e2#3 + #~e/z2ze3} 

"- + c J m  + c ,} .  = Niwi-P,2//,3 ~lt~/,lt ' 

Furthermore, if the first level variables Z~Rt are 
known to be multinomial, V~ can be expressed as 

(2.6) Vi = Di + c ~i~i T, 

where D~ is the diagonal matrix with (kt)-th 
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element wi ~£ik,, where ~£ikt --" NiWi~lt~2~3, 
Ci = (- 1//z2/z3 + C2/p,3 + C3)/Ni ,  and/z~ is c o l u m n  
vector with t-th element/z~t. 

(2.7) Vi 1 = Di -1 + di/,'i //i T, 

where d i =  - ci/(1 + ci Ni#~+~2~3), 
vi v = 1/wi (1, .... 1). 

Note that V~ depends not only on the 
distribution of z3u, z2~k, and z~k, 
in each stage but also on the link function. For 
instance, if link g is log link function, 
/%,(~) = exp(X'B), and the variance is now the 
function of exp(X'/5). Defining D~ =0/z/0~ be the 
matrix of partial differentiations of this mean with 
respect to/3, and using V( ~ of (2.7), the 
quasi-score equation for the a regression parameter 
Br is now derived from (1.1): 

(2.8) [l~kt Xikt(Yikt-,l,tikt) q- di~iktXiktlt/,ikt 

+ ~ikt(Yikt-P'ikt)] /Wi --" 0 

Example 2 

Liang and Scott (1989) adjusted original V for 
the correlation of repeated responses from a same 
subject. The correlation of repeated responses, 
expressed in a correlation matrix R, is included as 

V* = Vi 1/2 R Vi 1/2. 

They used V* instead of V for point estimation. V~ 
is now the covariance matrix for two level model 

~j Wi Z3ij Z2jk. 
We may assume that z3~j and z2jk are binomial 

variables in order to compare this result with the 
covariance (2.6) where we used three level model 
is used. For the comparison of two covariances, 
V~ of (2.6) and V~*, we further assume that the 
third level variables are also independent, and that 
R~ is diagonal matrix, the kt-th element/z~(l -/z~,). 

The kt-th element of V~* and V~ 
respectively" 

are 

N~ w~ z/x2/z3/zx,(1-/z2#3)(1-/z~,), 

Ni Wi 2 ~2 ]'1;3 ]'/'It(I- ~2~3~1t). 

V~* and V~ are not likely the same even in this 
simple case. 

One reason of the difference is that the 
covariance depends on R~ for V~*, the number of 
levels, and distribution of variables. Thus the 
estimation would hardly be the same under these 
two diverse models even if the objective is the 
same. Further empirical study might be needed to 
compare these two models. 

Example 3 

If the third level is Poisson process instead in 
Example 1, and the second level is simple random 
sample, and the first level follows multinomial, V~ 
is a diagonal matrix, the (ktt')-th element 

(2.9) N~ w~ 2 {e~,,/z2 (#3+/z3 z) 

-i- ~lt~lt '  ~2 (~3 + ~3") "~- ~lt~lt '  ~2 2 ~3} 

-- Ni Wi2]'L22~32~lt~lt ' {Cltt.(1 -'1"/.£3)/~£2~£3 

+ C2 ( 1 +/z3)/],£2].£3 "~- 1//x3 } 

where for multinomial case, the matrix form and 
its inverse of (2.9) is the same as (2.6) and (2.7) 
with new 

c~ = [-(1 +/z3)//z2/z3 + C:(1 +/Xa)//z3 + 1//z3]/Ni, 

Example 4 

Note that the change of levels would give 
different variance. For instance, z~j, z2~ k, and Z3ikt , 
reversing the ordering of levels, the level 1 being 
z~, and the level 3 Z3ikt , and the z2~ k remaining at 
the same level, we obtain a different variance from 
(2.2). The variables Zlu and z2~ k are all 
independent. Let z~j be the 1st level with Poisson 
expectation, 

El(Yijkt/ZlijZ2ikZ3ikt ) "-- Wi ~lZ2ikZ3ikt • 

Cov~(Y~jk, y~jk,,) = 0, and define Kronecker delta 
function tSa,,, the (jkt,jkt')-th element of V~ is 

(2.10) Wi2{~l~2~3t~ltt , + ~12~2(~3ktt , + ]'£3t~'3t') 
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~ ][J,l 2 ~2  2 ~3ktt'} 

__ W i 2 { ~ l ~ 2 ~ l A 3 t ~ l t t ,  + 2 2 - -  ~1 ~2  ~3 t~3 t , [C2(C3k t t  , -~- 1) 

+ C3kt,'l } 

= Wi 2 ~ l ~ 2 ~ 3 t ~ l t t  , "F" bkt t, Wi z /j,z ~2  2 ~3d[£3t, ' 

where bktt, = [C2 + ( C 2 +  1)C3kt,, ]. 
If Z3k ' were multinomial variables, 
~ikt  "" Niwi, / / ' l /J '2~3t ,  the covariance matrix of Yi+kt is 

(2.11) Vi = Di + ci/zi/zi', 

D~ is diagonal matrix kt-th element of 
/X~R,{W~ + (Cz+ l)#ikt/Ni,tt3t}, and the vector 
#i  "~ ( # i l l  . . . . .  #ikt . . . . .  # idT) ,  Ci = 1/Ni. 

Example 5 

The NCHS publications is the estimate for 
annualized cause specific rate of deaths per 
100,000 persons for the i-th month. The weight w~ 
are known. 

Let N~ be the number for the population of 
month i, D~ the number of deaths outm of N~, and 
d~ the number of sample out of D~ deaths. 

From Example 3, the first level z~ 's  (i = 1, 
.., M, j = 1, .... N~) of random deaths are 
independent and distributed as Poisson with mean 
E(z~ij) = D i /N  i = p,~. 

The second level effect ZZ~R (k = 1 . . . . .  D~) of 
sampling of selecting d~ deaths by simple random 
sample. E(Z:ik) = /z~ = di/Di, and e2 = V(z~.ik Z:~k,) 
= ~2(1-#~) if k = k' for a large Di, and = 0 
otherwise. 

The third level Z3~k, = 1 if the k-th death falls 
in the year t, and zero otherwise with E(z3~k,) -/z3~ 
and var(z3~kt) = e3,,. We may assume that the 
number of deaths in the consecutive years are 
correlated, and the third level also follows 
multinomial distribution, var(z3~k0 = ~3, (1 - #30. 

Now the impacts of these three random errors, 
death process, sampling, time correlation on the 
variance V~ are investigated. 

For these assumptions, then matrix V~ is the 
same as the variance (2.13) except e2 replaced with 
/z2 (1 -/zz). 

Example 6 

In Example 3, the correlation o/tt, between t-th 
and t'-th time for the k-th subject may be defined 

cov(z3ik, z3ik..)/{var(z3ik,)var(z3ik,,)} ''2, 

~" C3ktt'  ~3t  ~ '3t ' / [~3t,  ~3t'] 1/2- 

or C3k., = a..  (C3, C3,,) ~/2. We may replace C3R,,. 
in (2.10) with this definition. Define 

a k . ,  = { [ a . , ( C 3 ,  c '  a " - I  _ • --3, ' ,  ,(C~+ 1)+C2}. 

/ . t i k t - -  NiWi~l~2/A,3t .  

for  Yikt is, 

The (kt, kt')-th element of V~ 

(2.13) Wi ~b/'ikt + ~/'ikt ~[J'ikt' aktt,/Ni, 

3. ESTIMATION 

Let y~ be the (1 x d) vector of dependent 
variables for month i, mean u~ = (/q~ . . . . .  ~ikt . . . . .  

/z~d.r)' and covariance V~. Let X~ = ( x ~ ,  ..., 
X~k,,., .... X~dTp)' be the p x (dT) matrix of 
covariates. 

Denote linear predictor 
r/~ = (~7~ .. . . .  r/~k, . . . . .  r/~dx)'. A link function g 
relates the predictor r/~ to the expected value, 
g(u~) = r/~. If the link function is wrong and 
r/~ = X~3 is not a correct predictor, the variance 
would not be correct as the variance V~ depends 
O1"1 Ui(/3 ) through link. 

Let S~ = y~- u~ with E(S~) = 0, and V~(/~) be 
the covariance of var(y~), and D~ = Ou~/03. The 
estimating equation is given as (1. l), 

(3.1) U(/~) -- ~i Di T Vi "1 Si -" 0. 

fl is the solution of U(3) = 0, in which the 
variance V~ is not only a function of/3 and a, but 
of u~,, u2, and u3 as well. Assuming that a are 
known, the equation (3.1) may be expressed as 

(3.2) u, (3 ,  fi=(3)) = o 

where fi2(3) = fi2(3, fi3(3)), and 

fi~(3)= fi~,(3, 03(3), fi2(3)). 13 is now defined to 
be the solution of this equation. 
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Theorem 1. Under basic conditions for Taylor 
expansion, and 

(i) fi~,, fiz, and fi3 are the M~2-consistent 
estimates of u~,, uz, and u3, respectively given/3 
and a, that is, op(1); 

(ii) (O/Ouz) fi3(3,fi2(/3)), (O/Ouz) f i~,(3,f iz(3), f i3(3)) ,  
and (0/0u3) f i~,(3,f iz(3), f i3(3))  are bounded in 
probability, Op(1); 

then M~'z(13 - 3) has asymptotically normal with 
mean 0 and variance 

(3.3) (I;~,M(D~TV('D~)) ' 

[~iCM DiTVi lcov(yi)ViIDi](Ei, M(DiTViIDi)) 1- 

If cov(yi)=Vi, (3.3) reduces to ([~i,M(DiTVi~Di)) ~. 
When a link function is specified, we can obtain 

the explicit form of V~. Variance of ~ may be 
correctly estimated by replacing cov(y~) with 
S~TS~. S~TS~ may be more efficient then V~ when 
the model or link used for the derivation of V~ is 
not correct. 

3.2. ITERATION 

We may begin iteration with 13 ° substantially 

close to 13. The sequence of parameter 
estimates are generated by iterative reweighted 
least square method, dropping the subscripts, 

(3.4) ~÷~= ~ +(D rll-X/9)-~ (15 r l)-t~) 

The estimate 13 may be obtained by iterating 
until it converges. We may start the iteration 
with ordinary least square estimate of/3. 
Convergence criterion is to stop the iteration at 

(r + 1) step when M A X  I(~"+I _ ~,,)/~,.i < 10 -s . 

Provided that the eigenvalues o f /5  r ~-~/) 
are sufficiently large, the second term of (3.4) is 
negligible. Then, we may take the first round 

approximation 131=13, even when 131 is not a 
computable statistics. When V~ is set equal to 

one of the common densities, existing GLIM 
software provides the estimates of the 
parameters. 

4. FOLLOW-UP STUDY 

The longitudinal study of aging follows a 
cohort of older individuals over time, and 
provided information on changes of functioning, 
living arrangement, health care, and death. A 
subsample of the 1986 sample was taken among 
those 70 years of age and over in 1984 HIS base 
survey. The original number of HIS sample 
remained at 7,527 eligible for subsampling. 
The persons in the subsample were interviewed 
during 1986, 1988, and 1990. There are several 
variables of interest, which show the 
deterioration as time passes. However the data 
tape was not available to me, and could not 
apply our method to the follow-up data. 
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