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ABSTRACT 
In longitudinal studies a series of 

examinations are made of panels of subjects. Each 
"exam" represents the sampling of information at 
fixed times from a continuous time stochastic 
process. The temporal "density" of measurement 
determines how well the discrete time model, lbr 
which parameters are estimated, represents the 
underlying process. Since measurement is at fixed 
times there is missing data on the continuous 
process. Whether that missing data causes bias, 
and affects the "embeddability" of the discrete- 
time-mea~sured-process in the continuous process, 
depends on the time between measurements, and 
whether it exceeds the Nyquist interval. That is., 
how much spectral energy (mean-square frequency 
amplitude) lies out side of the bandwidth implied 
by the Nyquist interval. This in turn depends on 
the time spent in measurement, and the rate at 
which the continuous time process generates 
events. We consider the nature of information lost 
during a data collection period vs. that lost ()utside 
of data collection periods. Each panel member is 
available for measurement only in specific field 
survey periods which do not overlap in time. Thus, 
data in a panel is nonsystematically missing before 
and after data collection periods. It is 
systematically missing if the respondent dies 
during the field survey period before assessment. 
The proposed model identifies parameters 
describing a.) individuals, b.) variables, and c.) the 
time trajectories of both. An example using the 
1982, 1984, and 1989 NLTCS is provided. 

INTRODUCTION 
Fuzzy sets models can be used as a general 

non-parametric estimation strategy (no specific 
distributional assumptions are made) with the 
consistent estimation of individual scores 
(incidental parameters) is made possible by the 
geometric properties of the probability space 
defining fl~e solution. With this general form, it is 

possible to specify models of temporal processes 
where individuals have their own identifiable 
trajectories. The identification of individual 
trajectories depends upon the density of 
measurements over time, the number of distinct 
variables measured, and the period of time during 
which observations are gathered. Censoring 
events occurring during the data collection period 
precludes measurements of the covariates and 
hence are more problematic than those occurring 
between measurement intervals. This is because 
the updating (and thus "completeness") of state 
information is not directly affected when 
"censoring" occurs outside of data collection 
periods. 

We present a modification of a fuzzy set 
model to provide estimates of individual 
trajectories and to identify the effect of censoring 
on groups of persons within a data collection 
period. 

THE MODEL 
Fuzzy set models can be viewed as 

generalizations of statistical procedures used to 
analyze multiple discrete variables. For example, 
log-linear models are used to describe multi-way 
contingency tables (Bishop et al., 1975). In those 
models the cell probabilities, ~'jt, for J variables, 

each with Lj>2 categories, are estimated. If there 
are multiple independent populations then this is 
manifested by there being K independent sets of 
parameters Lkj l. Alternately, the K independent 

populations may be represented by defining a 
population indicator variable, gik, for each 

individual. The gik is 1.0 if a person is in the kth 

population and 0.0 otherwise. The gik, in log- 

linear models, is assumed observed and measured 
without error. 

One generalization of contingency table 
procedures is to assume that the K independent 
populations are unobserved (or that there is 
sufficient noise in the gik s such that groups cannot 

be directly identified). In this case whether a 
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person is in group k, or not, is assessed by ML 
estimation procedures applied to the data (i.e., the 
latent class model; LCM; Lazarsfeld and Henry, 
1968). Generally, instead of estimating gik s 

directly, lhe probability of being in a group (i.e., 

Pik = PROB(gik-  1.())) is estimated. Thus, LCM 

resolves heterogeneity not represented by 
contingency tables by identifying K latent tables 
with cell probabilitiees Lkj t and the probability of 

being in population k, Pik (Everitt, 1984). 

The fuzzy set model generalizes the LCM by 
suggesting that gik itself, (not the probability of gik 

= l.()) varies between 0 and 1.0. This allows 
measurements on persons to be represented as 
cc)nvex mixtures of K latent J-way tables. Thus, 
the gik and )~jl must be estimated simultaneously. 

If the multinomial data can be coded as Li binary 

variables, say, Yijt, then the model is written, 

PROB(xij / - 1.0)= Z gik" ;(k" ( 1 ) 
k 

Tlfis model has well defined characteristics 
because once J variables are selected, the 
"possible" response space M is defined with Sj Lj 
basis vectors. The basis vectors and the constraints 
¢~n the gik s and )t, kj/S used to estimate the 

probabilities in (1) define a linear space L B. The 

intersection of LB and M (LBnM) defines another 
lower dimensional convex p(~lytope.B, wlfich we 
can call the "actualized" possibility space (defined 
by the totality of traits of individuals wlfich can be 
characterized, either by its vertices (the 
coordinates )Lkjl), or its laces (the Ej tj  half 

spaces defined by Xkj l >_ 0; (Woodbury el al., 

1993; Weyl, 1949). 
The GoM model can be further generalized 

by removing the restrictions that B and its dual 
space B* be equal in dimension. Thus, in place of 
( 1 ) we write 

PROB(xij, = 1.0)= k~( r~ ~'ir(Prk))t,kj ' (2) 

In (2) the number of vertices of B remains 
fixed at K, but we "factor" the individual case 

" r s " space gik into R dimensions, or g oups, of cases. 

That is, there may be multiple groups of cases 
clmracterized by the same number, K, of extreme 
prt~bability vectors. Alternatively, if R ~: K then 
l he question is, if (1) is identified because LB<<M - 
B is uniquely defined, is (2) identified? This is 
salisfied liar R < K, i.e., the giks can be viewed as 

"new" variables where the corresponding possible 
response space M* is K dimensional so that the 
"internal" factorization is unique. 

The matrix q)rk' when RCK, is the identity 

matrix I,. When R ~e K, then q)rk is the pseudo- 

inverse of a non-negative matrix ~kr" It appears 

then that (Drk may have negative elements, i.e., q0 is 

tile probability matrix relating R and K. If, 
however, we are analyzing episodes distributed 
longi tudinal ly ,  then there are additional 
dimensions of data (replications over time) that 
may be exploited to identify parameters (assuming 
constancy of process parameters). If we designate 
episodes by t, then we can rewrite (2) as 

cant 
Pl; = k ~ g h n  "-'k ~jl" (3) 

If we substitute, in (3), Ibr gim' the K component 

Iuzzy set decomposition, 

g i m - 2 7  ~ q~', (4) 
r 

we get, with the solution constrained over t, 

P;; k ~  r~Tir qlm "-'k jl 

r q)m Ck nt 
k J 

r t ~k (5)  
= E ~  Vir Vk ]l 

k r 

r t is the matrix relating the R groups of In (5), V k , 

cases to the K probability profiles defining the unit 
rt simplex. We should not expect V k to be an 

identity matrix if it is constant over time t. In this 
case, it would be the probability matrix ~, 
independent of time. 

A N A L Y S I S  
D a t a  

The model wa~s applied to data on functional 
disability (9 measures of ADL, 7 measures of 
IADL, and 10 measures of physical impairment) 
and health (29 medical conditions) from the 1982, 
1984, and 1989 National Long Term Care Survey. 
Tlfis survey is based on a list sample of persons 
aged 65 and over who were Medicare eligible. 
The surveys are designed lc) be b~)th l~)ngitudinally 
(i.e.. persc~ns surviving Ic~ lhe next survey dale are 
reassessed) and crc~ss-seclic~nally (by adding in a 
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new sample of 5,000 persons who pass age 65 
between survey dates) representative of the U.S. 
elderly population at the survey time. In the 
analysis below we examine 27 functional 
measures with 16,585 observations in the three 
surveys (9,468 persons; some measured multiple 
times). In addition to the three surveys, records are 
linked to Medicare files on service use and 
mortality from 1982 to 1991. Approximately 
11,0{}0 deaths are recorded for both detailed 
responders and for persons identified as 
nondisabled on the screen (i.e., the total sample 
size is 45,000 over all three surveys including 
nondisabled persons and age-in samples). 
R e s u l t s  

The model was applied to the NLTCS for the 
years 1982, 1984 and 1989. From (5) 

i Vrk t ~k (6) p j i / t - 2 2 T r  ]1" 
k r 

In (6) all parameters are assumed nonnegative with 
the identifying constraints. 

i - 1  (7a) 2~,~ 
r 

Z V k t - 1  (7b) 
k 

E ~kjl _ 1. (7c) 
l 

The vector T i is 1-> 1 with the temporal 

trajectory for individual, IDi. We can pair T i with 

A r~ 
k 

which orients all individual trajectories to a 
convex common variable space. Thus, coefficients 

combine the profiles, L k, to present a time specific 

profile, All, with r implicit 

r t where K was set at In Table 1 we present V k 

6. In this table the six groups defined by health and 
functioning characteristics represent the columns. 
The six "groups" represent sets of individuals with 
common patterns or each of the three survey dates. 

The six profiles may be briefly defined as, 1.) 
Mobility and IADL impaired; 2.) Elderly, 
Moderately Impaired; 3.) Elderly, Heavily 
Impaired but withoul dementia; 4.) Relatively 
Functic}nal; 5.) Frail with Dementia; and 6.) by 
examining the )vkj I fr{}m (6) Missing (principaly 

n{}t in the sample {}r dead). 
We d{} not present th{}se tables because the 

novel element we are reporting on is present in 
Table 1 and because of space considerations. 

An examination of Table 1 shows that profile 
6 (missing) never occurs in group 1, occurs for 
group 2 in 1982 and 1989, in 1989 for group 3 and 
4, etc. The frail with dementia loads only on the 
last group in 1989. Group 1 and 4 are functional 
in 1982 and 1984. Thus, the matrix tells us how 
subgroups change in prevalence over time. 

D I S C U S S I O N  
The analysis of V indicated patterns of 

expression of specific groups over time. This is 
similar to a two-way classification of cases and 
variables except that the solution space has well 
defined properties due to the convexity constraints. 
More detailed analysis would include dependent 
mortality processes using the information on the 
11,000 deaths. Also, examinations of the identity 
of groups, and the measures of the extreme 
profiles, would be normally done in a substantive 
analysis. 
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Table 1" Dislribufion of'~ i vectoI,'s 

1 
Mobility 

ADL 
hnpaired 

Type 
2 3 4 5 6 

Elderly Elderly Frail 
Moderately Heavily Relatively With 

hnpaired Impaired Functional Dementia Missing 

Gr()up 1 
1982 6.46 ().0() 9.43 84.11 ().00 0.()0 
1984 6.53 0.()() 6.59 86.88 0.00 0.0() 
1989 (). 15 95.67 4.18 ().()() 0.()0 0.00 

Group 2 
1982 0. ()() 0.00 (). ()() 0.00 (). 00 100.00 
1984 1.()1 ().51 27.63 7(i).84 0.00 ().00 
1989 ().()() 0.()() ().0() (). 0() ().00 1 ()().00 

Grc)up 3 
1982 
1984 
1989 

0.()() ().0() 99.16 0.84 ().()0 
(). ()0 (). ()() 1 ()0. ()0 (). ()0 0.0() 
(). ()() 0.00 0. ()0 (). ()() (). 00 

0.00 
().00 

100.00 

Group 4 
1982 0.14 0.00 0.00 99.86 0.00 0.00 
1984 0.34 0.00 0.00 99.66 0.00 0.00 
1989 0.00 0. ()0 (). 00 (). 00 0.00 100.00 

Group 5 
1982 ().0() 0.00 48.(.)9 51.91 0.00 0.00 
1984 ().0() 0.()0 ().00 0.()0 0.00 100.00 
1989 ().0() ().00 ().()0 0.()0 0.0() 100.00 

0.0() 
0.00 
0.00 

0.00 0.00 0.00 0.00 100.00 
0.00 0.00 0.00 0.00 100.00 

9(i). 72 0.0() 8.11 1.17 0.00 

Group 6 
1982 
1984 
1989 
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