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selected market segments would 
undermine the coverage sufficiency 
estimated confidence intervals 2. 

further 
of the 

This paper applies a bootstrap resampling 
method to enhance the estimation efficiency and 
coverage sufficiency of confidence intervals (CIs) 
for small samples from a skewed population. 
Normal distribution theory Cls for the original 
(full-size) samples are compared with bootstrap 
CIs for the reduced (smaller-size) samples. Such 
comparisons shed insights into how well a 
bootstrap strategy can compensate for the loss of 
efficiency and coverage sufficiency of the 
confidence interval due to a reduction in sample 
size. 

1. BACKGROUND 

This study was originated to find out to what 
extent a size reduction can be compensated by 
the enhanced estimation efficiency and coverage 
sufficiency of the bootstrap resampling method 
in estimating confidence intervals. 

2. DATA 

The IRS's Individual Return Transaction 
File (IRTF) was the source of the data from 
which two sets of 100 samples of different sizes 
were randomly drawn. The selected measure 
used in this study is the tax liability reported on 
the return. 

The IRS has conducted a series of surveys in 
the Taxpayer Compliance Measurement Program 
(TCMP). In recent years, the IRS has become 
concerned about the cost associated with the 
surveys and has considered a reduction in sample 
size. 

The classical statistical theory dictates that a 
reduction in sample size would increase the 
variance and result in the loss of efficiency in 
the confidence interval estimation, other things 
being equal. Furthermore, such a reduction in 
sample size may reduce the sufficiency in 
covering the population mean by confidence 
intervals. 

It has been argued that given the rather 
large size of TCMP samples ~, a reasonable size 
reduction would not threaten the coverage 
sufficiency of confidence intervals. This view 
may be correct in the context of national 
aggregate. However, if we focus on selected 
segments of the national aggregate, we often 
encounter much smaller samples. A size 
reduction from these inherently small samples of 

2.1 Population 

The population consists of 38,000 individual 
tax returns filed in the IRS San Francisco 
District with Schedule C (Business) total gross 
receipts (TGR) of more than $25,000 but less 
than $100,0~ for tax year 1989. 

2.2 Original Sample Set 

This sample set consists of 100 independent 
random samples of size 52 from the population. 
These samples are labeled as A1, A2, ...A100. 
The choice of 52 is based on the sample size of 
the same stratum in the TCMP individual survey 
on tax year 1988 returns. 

2.3 Reduced Sample Set 

This sample set consists of 100 random 
subsamples of size 47, one from each of the 100 
full-size samples. These samples are labeled as 
B1, B2,...B100. The reduced samples represent 
about 10 percent reduction in size from the 
original samples. 
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3. METHODS 

A bootstrap resampling method and normal 
distribution theory were used to estimate CIs for 
the reported tax liability for both sample sets. 

3.1 Bootstrap Replicates 

The Mccarthy and Snowden (1985) "with- 
replacement bootstrap" method was used to 
create bootstrap replicates. Ignoring the finite 
population correction, this method used with 
replacement samples of size n-1 from the 
original sample for each bootstrap replicate 3. 

One thousand bootstrap replicates were 
selected independently for each of the 100 
samples in the selected sizes. For example, for 
sample A1, the 1,000 bootstrap replicates 
randomly selected are Albl ,  Alb2, ... Albl000, 
or for sample B100, the 1,000 bootstrap 
replicates are B 100b 1, B 100b2, ...B 100b 1000. 

efficiency. Coverage properties of estimated CIs 
were calculated to provide a measure of 
sufficiency and to form a basis of calibration for 
efficiency. 

The average range of a set of estimated CIs 
calibrated by coverage sufficiency was used to 
measure efficiency after the sufficiency 
adjustment. 

4.1 Unadjusted Average Range 

The unadjusted average range of a set of 
estimated Cls based on a particular method 
provides a measure of estimation efficiency. For 
example, if the average BT range is narrower 
than the average ND range for a particular 
sample set given a prescribed level of 
confidence, it would indicate that the bootstrap 
method is more effident than the normal 
distribution method in the CI estimation, holding 
other things constant 5. 

3.2 Bootstrap Confidence Interval 4.2 Realized Coverage Rate 

The bootstrap confidence interval (BT) for 
a particular sample can be readily observed from 
the nonparametric distribution of the means of 
its 1,000 bootstrap replicates. For a two-sided 
68% BT, the 160th and 841st bootstraps are the 
lower and upper bound, respectively. For a two- 
sided 95% BT, the 25th and 976th bootstraps 
are the lower and upper bound, respectively 4. 

3.3 Normal Distribution Confidence Interval 

The normal distribution confidence interval 
(ND) for a particular sample can be observed 
from the sample mean and standard deviation 
(sigma) estimates. For a two-sided 68% ND, the 
sample mean + 1 sigma are the upper and lower 
bound, respectively. For a two-sided 95% ND, 
the sample mean + 1.96 sigma are the upper 
and lower bound, respectively. 

4. MEASURF_~ 

For a particular sample set and by a 
particular estimation method, the average range 
of estimated CIs was used as a measure of 

The realized coverage rate (RCR) is defined 
as a percentage by which a set of estimated CIs 
actually cover the population mean given a 
prescribed level of confidence. For example, a 
70% RCR means that in 70 out of 100 samples, 
the estimated CI actually cover the population 
mean. 

The RCR provides a measure of coverage 
sufficiency. For example, if the ND's RCR is 
greater than the BT's RCR for a particular 
sample set given a prescribed level of 
confidence, it would indicate that the normal 
distribution method is more sufficient than the 
bootstrap method in the CI estimation, holding 
other things constant. 

4.3 Expected Coverage Rate 

The expected coverage rate (ECR) is defined 
as a percentage by which a set of estimated CIs 
should have covered the population mean given 
a prescribed level of confidence. For example, 
the ECR is equal to 68% for a set of estimated 
68% CIs, which means that these CIs should 
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have covered the population mean 68 times in 
100 cases. 

The ECR provides a benchmark to assess 
coverage sufficiency. For example, if the RCR 
is equal to the ECR given a prescribed level of 
confidence, it would reflect that the CIs actually 
covered the population mean as often as they 
should have. 

4.4 Calibration Rate 

The calibration rate is a factor by which the 
estimated CIs need to be adjusted to equalize 
the realized coverage rate with the expected 
coverage rate. The factor adjustment is based 
on the standard normal distribution function. 
The calibration rate (CR) is defined as: 

CR = Z"([1 +ECRI/2)/Z~([1 +RCR]/2) 

where Z ~ is the inverse of the standard normal 
distribution function. 

The CR forms a basis of calibration for 
estimation efficiency upon coverage sufficiency. 
For example, when a set of 95% CIs actually 
covered the population mean exactly 95 times 
out of 100 cases (i.e., CR= 1), it would indicate 
that no adjustment is necessary for these CIs' 
estimation efficiency based on their coverage 
sufficiency. 

4.5 Calibrated Average Range 

The calibrated average range is equal to the 
unadjusted average range multiplied by the 
calibration rate. 

The calibrated average range provides a 
measure of estimation efficiency after the 
adjustment of coverage sufficiency. For 
example, if only 64 out of 100 samples had the 
population mean covered by its estimated 68% 
CI, then the unadjusted average range needs a 
upward adjustment to reflect the less than 
sufficient coverage (i.e., CR>I)  ~. In this 
instance, the calibrated average range would be 
wider than its unadjusted counterpart. 

Similarly, when a set of 95% CIs actually 
covered the population mean 96 times out of 
100 samples, the unadjusted average range needs 
a downward adjustment to reflect the more than 
sufficient coverage (i.e., CR< 1)7. In this 
instance, the calibrated average range would be 
narrower than its unadjusted counterpart. 

5. RESULTS 

Tables 1-4 present the unadjusted average 
ranges, the realized coverage rates, the 
calibration rates, and calibrated average CI 
ranges, respectively, at both 68% and 95% 
confidence levels, by sample size and estimation 
method. 

Table 1 
Unadjusted Average Range 

at 68% & 95% Confidence Level 

Sample Size ND BT 

68% CI 
, ,  

52 $1,701 $1,671 
47 $1,788 $1,739 

95% CI 
52 $3,334 $3,284 
47 $3,504 $3,362 

Table 2 
Realized Coverage Rate 

at 68% & 95% Confidence Level 

Sample Size ND BT 

68% CI 
52 64% 72% 
47 62% 68% 

95% CI 
52 94% 96% 
47 93% 95% 
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Table 3 
Calibration Rate 

at 68% & 95% Confidence Level 

Sample Size ND BT 

68% CI 
52 1.087 0.926 
47 1.136 1.000 

95% CI 
52 1.037 0.951 
47 1.077 1.000 

Table 4 
Calibrated Average Range 

at 68% & 95% Confidence Level 

Sample Size ND BT 

68% CI 
52 $1,849 $1,547 
47 $2,031 $1,739 

95% CI 
52 $3,457 $3,123 
47 $3,774 $3,362 

6. FINDINGS 

6.1 Comparison Within Sample Size And 
Estimation Method 

o Both the unadjusted and calibrated 
average ranges are narrower for the bootstrap 
CIs within the same sample size. 

o The realized coverage rate is higher and 
the calibration rate is lower for the bootstrap 
CIs within the same sample size. 

o Both the unadjusted and calibrated 
average ranges are wider for the reduced 
samples based on the same estimation method. 

o The realized coverage rate is lower and 
the calibration rate is higher for the reduced 
samples based on the same estimation method. 

6.2 Comparison Across Sample Size And 
Estimation Method 

o The unadjusted average range of the 
reduced samples based on the bootstrap method 
is wider than the corresponding measure of the 
original samples based on normal distribution 
theory. 

o The realized coverage rate of the reduced 
samples based on the bootstrap method is higher 
than the corresponding measure of the original 
samples based on normal distribution theory. 

o The calibration rate of the reduced 
samples based on the bootstrap method is lower 
than the corresponding measure of the original 
samples based on normal distribution theory. 

o The calibrated average range of the 
reduced samples based on the bootstrap method 
is narrower than the corresponding measure of 
the original samples based on normal distribution 
theory. 

7. CONCLUSIONS 

The bootstrap method performs better in 
both estimation efficiency and coverage 
sufficiency in comparison with the normal 
distribution method within the same sample size. 
The bootstrap strategy has enhanced efficiency 
and sufficiency in the CI estimation. 

The original samples perform better in both 
estimation efficiency and coverage sufficiency in 
comparison to the reduced samples based on the 
same estimation method. The 10% reduction in 
sample size has diminished efficiency and 
sufficiency in the CI estimation. 

Although the bootstrap method has not 
improved estimation efficiency with the reduced 
samples enough to compensate for the loss of 
efficiency due to the 10% size reduction, its 
enhancement for coverage sufficiency has been 
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sufficient enough to gain a higher calibrated 
efficiency than what has been obtained with the 
original samples based on the normal distribution 
method. 

In conclusion, the bootstrap procedure 
enhanced the estimation efficiency of confidence 
intervals for the reduced samples, after 
calibrated by coverage sufficiency. For both 
68% and 95% confidence levels, the loss of 
estimation efficiency and coverage sufficiency 
due to the 10 percent reduction in sample size 
(from 52 to 47) can be compensated by using 
the bootstrap procedure in estimating confidence 
intervals. 

8. FUTURE RESEARCH 

In the future, we may apply the bootstrap 
strategy to different populations and measure 
the impacts of selected population characteristics 
on the effectiveness of bootstrapping. In 
addition, we may apply the strategy to larger 
sample sizes and measure the impacts of the size 
of the original sample on the effectiveness of 
bootstrapping. 

Finally, we may also want to repeat this 
experiment to determine the variability of the 
calibration rates. 
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NOTES 

t For example, the most recent (1988) TCMP 
survey of individual returns is a national random 
sample of approximately 50,000 returns drawn 
from the population of filed tax returns. 

2 Since the underlying population in a particular 
market segment may not be normally distributed 

and the sample may be too small for the central 
limit theory to be useful, the resulting CI 
estimates based on normal distribution theory 
may not be sufficient in covering the population 
mean. 

3This method was used in Wong and Ho (1991). 
For more detailed discussions, see Rao and Wu 
(1988) and Sitter (1990). 

4 The intervals need to b e  adjusted negligibly 
upwards to account for "small sample variability 
of the ranks." See Wong and Ho (1991). 

5 We assume, for example, the variance of the 
estimated CIs is small. 

6 In this case, ECR=0.68 and RCR=0.64; 
Z~=([1 +0.68]/2)=1, Z~=([1+0.641/2)=0.92. 
Therefore, CR =(1/0.92)= 1.087. 

7 In this case, ECR=0.95 and RCR=0.96; 
Z-'= ([1 +0.95]/2)= 1.96, Zq=([1 +0.96]/2)=2.06. 
Therefore, CR = (1.96/2.06) =0.951. 
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