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This paper summarizes some results on a project to 
study methods of variance estimation and 
confidence interval construction for quantiles of 
wages over a variety of occupations in the Bureau 
of Labor Statistics' Occupational Compensation 
Survey. Our work consists mainly of simulations 
from a population consisting of a single sample 
from one Metropolitan Statistical Area. Four 
methods are reported on here: (1) Woodruff, (2) 
Francisco-Fuller, (3) balanced repeated replication 
(BRR), and (4) balanced repeated replication with 
grouping of establishments (BRRg). A l s o  some 
incomplete results are noted for an approach 
involving direct estimation of the density in the 
expression for the asymptotic variance of the 
quantiles. Our findings are that either of the B RR 
methods outperforms Woodruff and Francisco- 
Fuller. Woodruff and Francisco-Fuller are about 
on a par, with Woodruff having a great edge in 
computational ease. For some occupations, all 
methods are abysmal; some analysis and conjecture 
are offered to account for this. 

1. P O P U L A T I O N  AND M E T H O D S  
The population dataset is from a test san~le 

of the Occupational Compensation Survey 
conducted in 1991. The population consists of 353 
establishments which we divided into 7 strata, 
based on industrial type (Manufacturing versus 
Services) and size class based on number of 
workers employed (whether in occupations of 
interest or no0; see Table 1. Additionally, we 
included one certainty stratum consisting of the 12 
largest establishments. The goal was to create a 
population from which we could sample in a 
manner that mimicked the sampling process from 
the original MSA population. 

Two establishment sample sizes were used 
in the simulations: (1) n = 36 (nh = 4 in strata 1-6 
plus 12 certainties), and (2) n = 60 (n h = 8 in strata 
1-6 plus 12 certainties). For each sample size, one 
hundred one-stage cluster samples were selected. 
In each non certainty stratum, each sample was 
selected by simple random sampling without 

replacement. All workers in a sample 
establishment were enumerated. In each sample, 
estimates of the 25 ~, 50 ~, and 75 ~ percentiles of 
wages were computed for the 9 occupations listed 

/ \ 

in Table 2. The column labeled cvll(4 ) gives the 

coefficient of variation of the estimated total 
number of workers in the occupation for the n h = 4 
sample design. This measure is related to the 
degree to which an occupation is clustered in the 
establishments and was used to identify 
occupations that would represent a range of 
difficulty for estimation of the variance of 
quantiles, and reflects an important difference 
between this population and other populations for 
which quantile variance estimation has been 
studied (e.g. Francisco & Fuller (1991), Wheeless 
and Shah (1988)) in that for a given occupation the 
number of units (workers) can vary widely across 
clusters (establishments), even within a given 
stratum. 

The ~,~ quantile of wages for a particular 
occupation is defined as 

qr (hO)~t,{ ,J" F(Yh,~ )> Y = min y~ _ J 

where h is a stratum, i is an establishment, and j is 
a worker, U is the universe of all workers, y~ is 

the wage of worker hij, and F is the cumulative 
distribution function (CDF) for wages in the given 
occupation defined by 

F = E E E I  h~--<Y , 
h t= l  j = l  

where ~ is the number of establishments in 
stratum h, Mh, is number of workers in 
establishment (hi) in the particular occupation, I is 
the indicator function defined as I~yh~.i" <_ y}= 1 if 

yuj _< y and 0 otherwise, and M is the number of 

workers in the given occupation. As an example, 
the 50 ~ percentile (the median) is the smallest wage 
value in the population such that at least 50 percent 
of the workers make that value or less. The sample 
estimate of the CDF at some fixed wage value y is 

"., { }/;, : ( y ) -  x x x ,,,,,,: y,,, --y 
h i~ahj=l 

where Sh is the sample of establishments in stratum 
h, and, for w~= Nh/n h the sample weight of 
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/~fm 
worker (hij), f,t=y. 7;'. Z wh, ~ is an estimator of the 

h lesh/=! 

total number of workers in the occupation. The 
sample estimate of the y ,h quantile is then 

clr : min{y: F(y) >_ y } .  (1) 

In practice, the sample estimator of qy is found by 

first sorting the sample workers in order by the 
wage paid to each and then cumulating their 
normalized sample weights Wh,j/M until q( is first 

exceeded. 
For each of the three quantiles listed above, 

we applied the methods of variance estimation of 
Woodruff, Francisco-Fuller, B RR, and grouped 
B RR. The principal difference between the first of 
these two and the B RR algorithms is that the 
forn~r involve preliminary calculations of the 
estimated distribution function and of its standard 
deviation, which is usually estimated by the 
linearization method. 

The Woodruff method (Woodruff 1952) 
takes several steps" (1) estimation of the variance 
s~ of the estimated distribution function /~(y), at 

Y = qr ; the usual design-based estimator is 

s~ = Z ( 1 - f h )  nh Z(dh~ --Yh) 2 
h n h - 1 ~ 

where f=nh/Nhd~, ~-,"' [ (  - } -  )] = ZWhtt [ Yho < y  F(y 
J=l 

with y = qr ; (2) construction of a (1-o0100% 

confidence interval F(y)_+ t, s,~ y _+ t~ s, for F(y),  

with y = ~, regarded as fixed; (3) determination of 

the quantiles corresponding to the endpoints of this 

interval to give l~r(q r )=[qr-,.,,'qr+,o,,] as the basic 
% l =  q 

(1-o:)100% Woodruff confidence interval for the 
population quantile qr" Note that this interval is 

not typically symmetric about the quantile estimate 
itself. (4) The standard deviation for the quantile is 
usually taken as the length of this interval divided 
by twice the standard normal percentile, that is, as 

Sq=(qr+, . , , -qr_, . , , )Dta.  Finally, a sylmmtric 

confidence interval is just ~, _+ t~ s q. An alternative 

which we have not seen mentioned in the literature 

to take s , = m a x ( q , + , . , , - q , , q , - q , _ , . , , ) / t ~  ; is 

this yields a symmetric confidence interval with 
coverage guaranteed as large as the basic Woodruff 
interval. In any case, the estimate of the standard 
deviation depends in part on the choice of cx; the 

literature generally suggests use of cz=0.05, 
corresponding to 95% intervals. 

It may be noted that in simulation studies 
using simple random sampling, carried out by the 
authors of the software package SUDAAN 
(Wheeless and Shah 1988), the Woodruff estimator 
performed somewhat better than the estimator 
finally chosen for that package; there is reason to 
believe that the gap between the estimators would 
widen in the context of complex surveys, especially 
with dam less well behaved than that from the 
standard normal and lognormal distributions used 
by Wheeless and Shah (1988). The Woodruff 
procedure is a good deal faster to compute than the 
other methods we are considering. 

The Francisco-Fuller (FF) or "test- 
reversion" method (Francisco and Fuller 1991) is 
closely related to Woodruff. Whereas the Woodruff 
bases the CI for the quantile on the CI for the 
distribution function at the estimated quantile, the 
FF method reties on confidence bounds of the 
distribution function at values around the quantile. 
In particular, the FF CI is the set 

F = {y:F(y)+t~s~ > y and [Z(y)-t~s~ < y }. 

The literature tends to suggest FF will outperform 
Woodruff, although computationally it is far more 
intensive, requiring estimation of/~(y) and s, over 

an array of y-values, as well as various 
tlansfommtions and smoothing operations. To our 
knowledge it has not hitherto been tested in the 
context of complex sampling of the sort arising in 
the OCS. In particular, the case of unequal-sized 
clusters has not been dealt with. 

The B RR method consists of dividing the 
establishment sample into half-san~les in a 
prescribed way, estimating the desired quantile 
from each half-smlqgle, and computing the variance 
among the half-salI~le estimates. For the test 
population, we treated each sample as if a two-per- 
stratum design had been used. For nh----4, for 
instance, we treated the first two randomly drawn 
establishments in a stratum as a pair and the third 
and fourth units as a second pair. For the nh----4 

design, 6x2=12 pairs were created in the 
noncertainty strata. The minimal number of 
balanced half-samples is 16 in this case. The 
noncertainty units in a particular half-sample were 
then combined with the 12 certainties and a sample 
quantile was computed using (1). For the nh--8 

design, 6x4=24 pairs were formed with the 
minimal number of balanced half-smI~les being 
28. The BRR estimate of variance of ~, is then 

l Z[0 r> 0, R _ ]2 
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~(r) is the estimated quantile based on half- where q, 

san~le r and R is the total number of replicates 
(half-samples). 

The grouped B RR method is similar to the 
full B RR but reduces the number of replicates. In 
each stratum, the sample units were put into two 
groups, and the groups were assigned to half- 
samples. For nh----4, tWO groups of tWO 
establishments each were formed. For nh=8, tWO 
groups of four establishments each were formed. 
Establishments were assigned to groups in each 
sample in the order that they were selected. For 
example, when nh----4, the first and second units 
selected in a sample were put in group 1 while the 
third and fourth were put into group 2. With the 
grouped method, tWo groups are formed in a design 
stratum regardless of the number of sample 
establishments. The number of replicates in a 
balanced set with 6 strata is 8, rather than 16 for 
the ungrouped case when nh----4 or 28 when nh=8. 
Although popular as a means of reducing the 
number of replicates and therefore computation, the 
grouped BRR estimator will typically be less stable 
than the full BRR and will produce c r s  with 
inferior coverage properties. When the number of 
strata is small and nh is large, the grouped B RR 

estimator may, in fact, be inconsistent (Rat and 
Shao 1993). 

2.RESULTS FOR VARIANCE ESTIMATORS 
As a measure of the bias of one of the four 

standard error estimators, we computed the ratio of 
its average to the empirical root mean square error 
over the 100 samples. The ratio was defined as 

"v'i-~/rmse(O) where v is one of the four variance 
u-'Y ~-',,~ ~/2 L estimators, = --.~=l vk [100, and v 

= 1oo )2/100 with 0k being the rmse(gl) ~[Z=,(glk-q 
estimated quantile for sample k and q being the 
population quantile. The ratios are plotted in 
Figures l(a) and l(b) for the 50 ~ percentile for 
both nh=4 and 8. A few notable features are: 
(a) The order of performance, as measured by bias, 
from best to worst is B RR, grouped B RR, 
Woodruff, and FF. The B RR and grouped B RR 
tend to be fairly close. Some evidence suggests 
that the weak point in the Woodruff and FF 

the linearization estimate of estimator is in s,, 
variance of the distribution function. 
(b) Underestimates are more common than 
overestimates. Although not shown in Figure 1, 
the degree of underestimation is greatest for the 25 ~ 
percentile and smallest for the 75 ~. 

(c) The negative bias can be substantial at either 
sample for all variance estimators for occupations 

/ \ 

with larger values of cvIM ). In particular, 

performance is poor for occupations 5,6,8, and 9. 
However, there are some anomalies; B RR and 
B RRg are positively biased for occupation 7 

1 v 

having high cv(M), and the estimators do 

universally poorly for 2 having small cv(1Q). This 
last case is explained by the fact that occupation 2 
occurs almost exclusively in certainty 
establishments, so that the variance estimate is 
frequently zero for all estimators. 

3. CONFIDENCE INTERVALS 
Coverages of 95% confidence intervals 

across the 100 samples are plotted in Figures l(c) 
and l(d) for each occupation and variance 
estimator. For the Woodruff and FF methods, Crs 
were computed as described previously. For B RR 
and BRRg, normal approximation CI's were 
calculated as 0~ +_1.96v u2 where v is one of the 

BRR estimators. Some general observations are: 
(a) The order of performance, as measured by CI 
coverage, is the same as for variance estimation: 
BRR, grouped BRR, Woodruff, and FF. 
(b) Coverage percentages are typically less than the 
nominal 95%. 
(c) The occupations where variances were 
underestimated the most have extremely poor 
coverage. 
Security guard (9) is the worst case having 
coverages for the median between 20% and 30% 
using Woodruff or FF. BRR and BRRg are better 
(40%-50%) but far from acceptable. 

4. DISCUSSION 
It follows from the Bahadur representation 

quantiles O~--q~+[1/f(q~)](F(q~)-P(q~)) (see of  

for example Francisco and Fuller 1991) that 

var(0, ) ~ [ ¢ f ( y ,  )]2var(/~(yr )) where f(y) is the 

density associated with the CDF F(y). Thus, 
variance estimators of the quantile implicitly or 
explicitly must perform two tasks: (1) estimate the 
variance of the distribution function, and (2) 
estimate the density function f(y). BRR and BRRg 

do both i n ,  licitly; Woodruff and FF rely on 
explicit estimation of the distribution function and 
use inversion of confidence intervals to estimate 
f (y) implicitly. 

An alternative is to estimate f(y) directly 

using non-parametric density estimation, a subject 
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which has seen a great deal of research in recent 
years; Silvemmn (1986) is a good introduction. 
Hall and Sheather (1988) discuss one simple 
version of this approach first proposed by Bitch 
and Gastwirth (1968), viz. 
~C(~lp)=(2m/n)/(X,÷m--X,_m) where Xr=~p and m 

is an integer to be selected by the analyst. 
Wheeless and Shah (1988) propose another 

simple estimator, nan~ly 
)~(~,p)= ( P(x;+~ ) -  P(x; ))/(x;+~ - x; ), where {x~' } 

forms an evenly spaced grid on the interval covered 
the sample values, and [x~,x~+,] contains by 

This estimator has been incorporated in SUDAAN 
software; we hazard it will be vulnerable to 
unevenness in the data, especially if the number of 
bins [x~,x~÷l] is selected arbitrarily, since at most 

one data point is guaranteed to be in a particular 
bin. 

More sophisticated methods of density 
estimation exist, for example, the simple kernel 
estimator 

where KO is a density function symmetric about 0, 
and b is a bandwidth selected by the analyst. 
Figures l(c) and l(d) show coverage yielded by 
variance estimation based on an adaptive kernel 
estimator (Silverman, 1986, Section 5.3); it 
outperforms Woodruff and FF at the median, with 
uneven results at the other quartiles. This is 
encouraging, since no serious attempt was made to 
choose a bandwidth geared for sound confidence 
intervals, as in Hall and Sheather (1988). 

For the Woodruff, FF, and direct density 
methods, one can also seek improvement in 

/ X 

estimation of var(/~(y, )) We ran simulations in 

which the true (population) variance (estimated by 
the empirical variance of P(yv ) over all runs) of the 

distribution function is employed in the Woodruff 
method; Figures l(c) and l(d) show that the 
resulting empirical coverage of confidence intervals 
for the quantile tends to closely match the nominal. 
This suggests that an improved estimator of 
var(/~(y~ )) would lead to improved coverage. 

To get finlher light on this, consider the 
working model which posits that, conditional on 
the number of employees in the given occupation in 
an establishment Mh, , the wages Yho are 
realizations of random variables of the form 
Yho = l~h +eh, +eho'h= 1 ..... H;i  = 1 ..... Nh; j = 1 ..... Mh, 
with the between and within establishment errors 

eh, and eh, j mutually independent. The Mh, 

themselves are taken as independent with mean and 
variance m h, @h respectively; also let m~ = E(Mh2,) 

and K h =M-2"'-lxr2( l ' h  l'h -- fh)" Then it can be shown, 

using the usual linearization of a ratio, that 

var(fi'(t)- F(t)) .~ Y'.hK h {Ah (t)* h + Bh (t)m h +C h (t)m: } 

where A h(t), B h(t), C h(t) are positive functions 

given by Ah(t ) = (Hh(t)-  F ( t ) f  , 

B h ( t ) :  H h ( t ) -  Lh,(t ), and C h ( t ) :  Lh,(t ) -  H~(t), 

with Hh(t)= P(Yho <- t) =JGh,(t- •h- x)dGh(X) and 

Lh,(t)= JGh](t-- ~h--X)dGh(X), for G h and Gh, 
distribution functions for eh,, ehO respectively. One 

can show that the standard variance estimator 

s 2, =]~hKh{Ah(t)+h + 

where ,4h(t) = (I?th(t)-- [Z(t)f with 

+,  =(n h - 1)-'Y.,(Mh,--Mh.) ~. Except for the first 

term, this does not match var(P(t)-F(t)),  so that 

there is some hope that a model-based estimator 
might improve things. 

However, this hope is not too strong. If 
only a few strata contribute actual workers for a 
given occupation, and within the contributing strata 
the distribution of the Mh, is positively skewed, 
with, say, mostly zeroes, a scattering of small 
values, and one or two large values, then when the 
few large values are missing from the sample, 

h, mh" m~ will all tend to be underestimated and 

so, consequently, will vfi.r(P-F), whether we use 

or a more elaborate the standard estimator s y 

model-based estimator. This also suggests why the 
index CV(M)fore te l l s  as well as it does when 

/ \ 

coverage is low. Since P is a ratio estimator, this 
result would seem to be anticipated in (Hansen, 
Hurwitz, and Madow 1953, Ch. 4, Sec. 12), which 
discusses the relationship between the coefficient of 
variation of the estimator of the denominator of the 
ratio, and the linearized estimate of variance of the 
ratio estimator. However, a parallel study carried 
out on confidence intervals for total wages, yielded 
coverage very similar to that for quantiles, and an 
explanation in terms of underestimation of the 
parameters ¢ h, mh" m~ is possible for totals also. 

Thus improvements in coverage will not be 
easy. We see several avenues for exploration: (1) 
estimating the variance of the distribution 
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function by BRR; this should certainly improve 
the linearization estimator and may have certain 
advantages over the direct application of BRR to 
the quantiles in terms of computation time and 
incorporation of sampling fractions into the 
variance structure; (2) incorporating information 
on occupation from other regions or time periods 
or from related occupations into the variance 
estimates; this amounts to using small area 
estimation for variance estimation; (3) using the 
bootstrap rather than normal confidence intervals; 
and (4) adjusting the degrees of freedom 
associated with the variance estimate, to take into 
account the number of clusters (establishments) 
actually contributing data on a given occupation. 
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Stratum 
number 

Table 1. Description of Population 
Size classes No. of estabs, in No. of sample 
(Number of population estabs 
Employees) Nh nh 

Manufacturing 
Manufacturing 
Manufacturing 
Services 
Services 
Services 
Certain 

<250 35 
250-999 35 
_> 1000 33 
<250 136 
250-999 66 
>_ 1000 36 
12 largest 12 

4 o r 8  
4 o r 8  
4 o r 8  
4 o r 8  
4 o r 8  
4 o r 8  

12 

Occ. no. 
Table 2. Occupations in Study 

Description cv( ) 
Accountant IU 

Engineering technician I 
Secretary II 

Switchboard operator-receptionist 
Computer systems analyst I 
General maintenance worker 

Secretary I 
Key entry operator II 

Guard I. 

.052 

.055 

.160 

.174 

.177 

.438 

.666 
1.163 
2.271 
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Figure 1. Ratios of standard error estimates to empirical root mean square errors 
and empirical coverage of 95% confidence intervals for median wages 

(a) S.E. Ratios, n h - 4  (b) S.E. Ratios, nh= 8 
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