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1. INTRODUCTION 
The Bureau of Labor Statistics' (BLS) 

Current Employmem Statistics (CES) Survey 
gathers data monthly from over 380,000 
nonagricultural business establishments allocated 
across all States, for the purpose of estimating total 
employment, employment of women and production 
workers, hours, and earnings. Estimates are made 
for over 1,500 industry cells, complementing the 
demographic detail provided by estimates of 
employment from the Current Population Survey 
(CPS). Monthly estimates of level and over-the- 
month change in employment are of primary 
importance to the users of these data. In addition to 
national estimates of level and change for these 
1500 cells, state estimates for many of these cells 
are required. Unfortunately, many estimation cells 
within individual states, suffer sample sizes that are 
extremely small. It is not necessarily the case that 
variances of such cell estimates are always going to 
be large; there is a complex relationship between 
cell variances of employment estimates and cell 
characteristics other than sample size. This paper 
documents the derivation of these relationships and 
their application to variance estimation using 
generalized variance functions (GVFs). 

The estimate of over-the-month change for a 
basic estimating cell is the quotient of total 
employees for the current month in the matched 
sample (all sample establishments that reported 
employment for both current and previous month) 
over total employees for the previous month in the 
matched sample. This quotient is called the link 
(between current and previous month). The estimate 
of level for the current month is the product of this 
link and the estimate of level for the previous 
month. This estimate of level is called the hnk 
relative estimator. It is closely related to both the 
ratio and the regression estimator. 

Royall and Cumberland (1978,1981), and 
RoyaU and Eberhardt (1975) looked at the general 
problem of estimating the variances of ratio and 
regression estimators. Their findings lead to some of 

the estimators tested here. The specific problem of 
estimation of CES variances has been studied by 
West (1984), Royall (1981), and Madow & Madow 
(1978). The estimators considered here include 
variations on their suggestions, with the emphasis 
on computational simplicity. 

The derivation of the generalized variance 
functions follow the motivation and goals outlined 
in Valliant (1992): variance estimates should be 
computationally simple, be approximately unbiased, 
yield reasonable confidence interval coverage, and 
exhibit greater stability than the point estimates of 
variance. If such estimators can be derived, they 
will be used to establish publishability in place of 
the present rule that requires either a cell sample size 
of at least 15 or that the cell sample employment be 
50% or more of the total cell employment. 

A universe data base was created for this 
study from the Califomia and Michigan 
Unemployment Insurance (UI) reports covering the 
18-month period of Jan 90 to Jun 91. For the 
Califomia data, within each of 352 three digit SICs, 
sampling and estimation were replicated 50 times 
following as nearly as possible the actual CES 
sampling and estimation methodology (the link 
relative estimator) . These 50 replicate estimates 
were then used to estimate the relative variance of 
the link relative estimator in each 3-digit SIC cell 
over a nine month period (April 1990 to Dec 1990). 
This gave us 352x9=3168 relative variance 
estimates by SIC cell and month to be used to fit 
GVFs of cell characteristics and time (months from 
benchmark month). 

The generalized variance function 
suggested for implementation is: 
RV = Exp(Log(g) - Log(b) + (2/3)Log(H) + (2/3)) 

= (1 .93 ) (g /b )H(2 /3 )  
where RV is the relative variance of the link relative 
estimator of total employment (see 2.3) in an 
estimation cell, b is the total sample employment 
(total number of employees in the sample units), H 
is the number of months between estimation month 
and benchmark month (See equation 2.3), and g is 

860 



the cell's finite population correction factor ( g=l- 
(b/LR) where LR is the estimate of cell 
employment. 
2. THE LINK RELATIVE ESTIMATOR. 

The over-the-month link is the ratio of the 
total matched sample employment for the current 
month over the total matched sample employment 
for the previous month, where the "matched sample" 
consists of those units which reported employment 
for both months. The over-the-month link is an 
estimate of employment change between adjacent 
months. 

For a given pair of adjacent months j and j- 
1, let aj be the total employment in the matched 
sample for month j Let b. be the total employment • j 

in the matched sample for the previous month, j-1. 

The over-the-month link is ~j = aj/bj. Under the 

model that describes an establishment's total 
employment in the CES survey we have: 
aj = gjbj + ej (2.1) 
where E(ej) = 0 ,  gj is an unknown constant 

with ~i. )" Var(e.jlbj)=Kbj, where K is (estimated 
an unknown constant, and aj & bj are given as 
follows: 

aj= Y~ Ykj & b j=  2 Xkj 
kesj  kesj  

sj is the matched sample for months j and j- 

1, x kj is the total number of employees (all 

employment) in the kth sample establishment for 

month j- l ,  and y~j is all employment in the kth 

sample establishment for the current (reference) 
month j. 

This model implies that the conditional 
variance of the link given bj is" 

V([~j]Ibj) = K~j 

(2.2) 
The CES estimate for total cell employment 

in month H is called the link relative estimator 
(LRH) and is given as: 

H 
A 

LR n = ( B M ) I ~  j (2.3) 
j=l 

where (BM) is actual total employment for the base 

period (the benchmark month) and the {~j} are the 

month-to-month estimates of change between 
months j and j-1. The benchmark month is either 
the most recent March or the March before that. 
The link relative estimator is the "Best Linear 
Unbiased Estimator" under (2.1) , (2.2) , and the 
feature of CES data response called hierarchical data 
flow. Hierarchical data flow occurs when the set of 
respondents for month j is contained in the set for 
month j-l ,  for each month back to the benchmark 
month. The shuttle schedule used in the CES survey 
encourages hierarchical data flow. 

An identical estimation process is carried 
out in most of the 1500 estimation cells. A 
subscript denoting cell was purposely omitted to 
simplify notation. 
3. THE RELATIVE VARIANCE OF THE LINK 
RELATIVE ESTIMATOR 

Consider relationships between the 
conditional variance of the month-to-month links: 

A 

v( j bj)=gjWbj, (3.1) 
where K is a constant and gj is a finite population 

correction factor for month j. Recall from the 
previous section that, aj is the matched sample 
employment at time j ano bj is the matched sample 
employment for time j-1. The matched sample 
consists of those units which were in the sample at 
both times j and j-1. 

The above expression for variance is 
suggested by Cochran (page 153) and in Section 2, 
with the addition of a finite population correction 
factor. The variance of a ratio can be approximated 
as (gjfoj)K where K is a constant independent of the 
sample outcome. 

Gibrat (1930) suggests that when an 
estimation cell is selected at random (equal 
probability) from among all the CES estimation 
ceUs and its employment is observed then this 
employment value is approximately lognormany 
distributed. This property seems to hold for matched 
sample employment too. Taking logs transforms the 
empirical densities of both matched sample 
employment and estimated employment ( as well as, 
estimated relative variance across cells) from highly 
skewed to roughly bell shaped. 

The relative variance of a random variable 
can often be approximated by the variance of the 
Log of that random variable (when these items are 
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defined). This property holds for the link relative 
estimator (LRH). Thus the variance of the Log of 
the link relative estimator is approximately equal to 
the relative variance of the link relative estimator. 

A 

The {~j} are the sample links between 

adjacent months, B M is the cell benchmark 
employment, and 

H 
A 

LR n = (BM) H ~j , 
j=l 

Then" 
RV(LRH)- V(Log(LRH))= 

V(Log BM) +  Log(gj)), 
The relative variance of the link relative 

estimator can be expressed as the sum of variances 
of the Logs of these links and covariances between 
them (Log(BM) is constant). 

RV(LR) = V(Log(BM) + ~ Log(~j )) 

H H 

=Z ))+ Z coy ), )) 
j=l i~k 

(3.2) 

The autocorrelations between the 

approximate the autocorrelations between 

A 

the 

{Log(~j )} since for ] ~ j -  1[ small, 

A o A 

Log(13j ) ~j - 1. The autocorrelations between the 

{ 13j } are a decreasing nonnegative function, r, of the 

number of months separating the two sample links. 

For example, the correlation between ~ &~k (or 

between Log(~3 i ) & Log(13 k )) is: 

O~i,[3 k ^ = r(li-kl). 

(3.2) becomes: 

H 

RV(LR)= E V(Log(~j  )) + 
j=l 

H A A 

Cov ( L o g ( ~ ) ,  Log([l k ))-- 
i~k 

H 

~ V ( L o g ( ~ j ) )  + 
j=l 

H A ' 

~r(li- k[)~/V(Log(~))V(Log(13 k)) (3.3) 
i**k 

Since the month-to-month links, {13j}, are 

ratios of sample employments (lognormally 

distributed), the links are also lognormal, Log(~# ) 

- N ( 0 , o  2j), where o j2 is unknown and since the 

month-to-month link vary about one, their logs vary 
about 0. Then, by Lognormality, Johnson and Kotz 
(1970) pp 115, the variance of a sample link can be 

^ 2 o2. 
written as: V ( ~ j ) = e  °~(e ' - 1 )  and under 

historical experience with the CES data (also 

Cochran), V ( ~ j ) - ( K g j ) / b j  , where K is a 

constant, g'sj =(1-(b./LR.)) , is a finite population J J 
correction factor, bi is the sample employment in the 
denominator of the~j th sample link. 

If these two expressions for V(~j ) are 

equated and solved for e °~ in terms of bj and gj, the 

result is: e °~ = (1 / 2) + ~/(1 / 4) + (Kgj / bj ) , 

or" 

2 = L o g [ ( 1 / 2 ) + ~ / ( 1 / 4 ) + ( K g j / b j ) ] ,  Oj 

For a given estimation cell, both g~ and bj 
remain relatively constant over time (j), oropping 

2 their subscripts acknowledges this fact and o j can 

be written as: 

2 _ Log[(1 / 2) + x/(1 / 4) + (Kg / b)] Oj 

(3.4) 
Thus (3.3) can be written as" 
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H H 

RV(LR)= Z O2 j "~" Z r(li- k[)OiOk , 

j = l  i ,~k 

and substituting (3.4), RV(LR) = 

H 

]~_ Log[(l / 2) + 4( l  / 4) + (Kg / b) ] + 
j=l 

H 

r(li- il)Log[(1 / 2) + 4(1/4) + (Kg / b)] 
i,tk 

= Log[(1/2)+ x/(1 / 4) + (Kg / b ) ] x  

( H 1 H + ~.~r(li- kl) 
i , k  

(3.5) 

The relative variance of the link relative 
estimator are themselves very skewed; most cells 
have relative variances near zero and a few values 
are scattered about well above zero. This suggests 
that Log(RV(LR)) be considered. In fact, the log 
transformation results in the {Log(RV(LR))} being 
roughly bell shaped across estimation cells. Next it 
is shown that this additional transformation of the 

data simplifies the generalized variance function. 
Taking Logs of both sides of 3.5 we have" 

Log(RV(LR)) = 

H 
Log(H + E r(li- kl)) + 

i;~k (3.6) 

Log[Log[(1 / 2) + ~/(1 / 4) + (Kg / b)]] 
The Log of the relative variance is a 

function of H plus this iterated logarithm function of 
g and b. Although this iterated logarithm is a 
nonlinear function of g and b, if it is written as a 
function of Log(g) and Log(b) by substituting 
exp(Log(g)) for g and exp(LogCo)) for b, this 
nonlinearity in b and g is nearly transformed to a 
plane in Log(g) and Log(b). Approximating this 
iterated logarithm with a plane is appropriate for 
small to moderate values of K ( say K<100). When 
K is estimated with historical data, estimates much 
smaller than 10 (99% of SICs) are the ru!e. If 
estimates of K are averaged across SICs, this 
average is about 1.6, with most SICs much smaller 
than 1.6 and a very few larger (some much larger, 
the distribution of the Ks across SICs is skewed). 
For values of K<.5 say, the three dimensional graph 
of this iterated logarithm is visually 
indistinguishable from a plane. From now on refer 
to the expression for Log(RV(LR)) given by (3.6) as 

Figure 1. Graph of Log Relative Variance (WGVF, given by 3.6) as a function of Log(b) and Log(g). 
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WGVF. Figure 1. shows WGVF for K=l.6 and 

H 

L o g ( H  + ~ r([i- k[)) = 1.7 graphed as a function 
i~k  

of Log(b) and Log(g). 
The surface in (Log(g),Log(b)) given by 

(3.6) is virtually parallel to the surface: Log(g)- 
Log(b) (i.e. they have nearly the same first partial 
derivatives with respect to (Log(g), Log(b)). This 
fact suggests that a generalized variance function of 
the form fl + f2L°g(H) + f3L°g(g/b), where f3 is 
close to one, or fl + f2L°g(H) + log(g/b), be 
investigated. Such GVFs are considered in the next 
section. 
4. SOME SIMULATION RESULTS 

A GVF is derived from historical CES data 
where Log(RV(LR)) is fitted to a plane in Log(b) 
and Log(g). Log(RV(LR)) was estimated from the 
universe data base where for several thousand 
(SIC)x(State)x(Month) categories, CES sampling 
and estimation methodology was replicated 50 times 
to produce 50 independent link relative estimates. 
These 50 estimates were used to estimate variance, 
relative variance, and Log(RV(LR)) using the 
standard formulae for each of the 
(SIC)x(State)x(Month) categories, These estimates 
of Log(RV(LR)) were used to compute a least 

squares fit of f~ + f 2 L o g ( b ) + f a L o g ( g ) .  The 

result of this fit was fl=0, f2=-0.7, and f3=1.6. 
This surface is quite different from that 

hypothesized in the last paragraph of the last 
section. This is probably due to at least two factors. 
First, the time distance, H ,  to the benchmark month 
is not included as an independent variable; the data 
seems to prefer that fl be zero and the coefficients 
f2 and f3 change as H changes. Second, the 
historical data used to fit the coefficients (fs) is not 
uniformly scattered over the rectangle of possible 
values ([-3,0]x[0,15]) in the (Log(g), Log(b)) plane. 
The estimation cells with large employment 
estimates have values of log(g) that vary over the 
full range,-3<Log(g)<0 but in small estimation 
cells, log(g) is almost always close to zero (This is a 
roughly L-shaped region in [-3,0]x[0,15]). 

For 16 pairs of values for b (rows) and g 
(columns) Table 1 contains the values of WGVF 

H 

with Log (H  + Z r ( [ i -  k[)) =Log(H.66), K=1.6, 
i~k  

H=10, and values of the linearized version of this 
GVF given by: 

LGVF=(-0.7)Log(b) + (1.6)Log(g) (4.1), 

Table 1 indicates that WGVF and LGVF 
can differ to a disturbing degree over the L-shaped 
region, low FPCs & high b values or FPCs near one 
and small to moderate b values. In addition. LGVF 
is not a function of H, a necessary parameter for the 
variance of the link relative estimator. The R 2 value 
associated with the LGVF fit is about .8. The R 2 
value for the WGVF (squared correlation between 
estimates of relative variance and the WGVF 
predicted values) is also 0.8. 

As suggested in the last paragraph of the 
previous section, the estimates of Log(RV(LR)) 
described in the first paragraph of this section were 
used to fit: fl + f2L°g(H) + log(g/b). The result was 
fl = f2 = 2/3. This GVF relating Log(RV(LR)) to 
(H,b,g) is called CGVF. and it is also included in 
Table 1. Recall that CGVF is a plane in (Log(g), 
Log(b)) that is nearly parallel to WGVF. CGVF is a 
generalization of the expression for the relative 
variance of the ratio estimator under simple random 
sampling. Taking exponentials: 

RV(LR)=(g/b)exp(2/3)U 2/3 = 

(( 1/b)-( 1/LR))exp(2/3) H 2/3. 
Table. 1 - Comparison of theoretical and data 
determined Generalized Variance Functions. 
Sample 
Employment 
1000 

WGVF 
CGVF 
LGVF 

46000 
WGVF 
CGVF 
LGVF 

91000 
WGVF 
CGVF 
LGVF 

136000 
WGVF 
CGVF 
LGVF 

g=1/8 

-6.7 
-6.8 
-8.2 

-10.8 
-10.6 
-10.8 

-11.5 
-11.3 
-11.3 

-11.9 
-11.7 
-11.6 

g = 3/8 

-5.8 
-5.7 
-6.4 

-9.7 
-9.5 
-9.1 

-10.4 
-10.2 
-9.6 

-10.7 
-10.6 
-9.8 

g=5/8 

-5.3 
-5.2 
-5.6 

-9.2 
-9.0 
-8.3 

-9.9 
-9.7 
-8.7 

-10.3 
-10.1 
-9.0 

g=7/8 

-5.0 
-4.8 
-5.0 

-8.8 
-8.7 
-7.7 

-9.5 
-9.4 
-8.2 

-9.9 
-9.8 
-8.5 

864 



This is analogous to (1/n)(1-(n/N))S 2, where b (a 
measure of sample size) replaces n and LR (a 
measure of cell size) replaces N. Thus CGVF is 
appealing both for it's simplicity and for the fact that 
after a somewhat complicated derivation, a slight 
twist on a familiar variance expression is obtained! 
5. PUBLISHABILITY RULES AND RELATIVE 
VARIANCE. 

One purpose of estimating relative variance 
is to establish a statistical criterion for publishing 
state level estimates that is less arbitrary than the 
current "15/50 Rule". This role states that an 
estimate may be published if it is based on a sample 
size of at least 15 establishments or the total sample 
employment is at least 50% of the total cell 
employment. Experience has shown that this role is 
often too stringent and that there are many cells 
where the 15/50 criteria is not met but the estimates 
are nonetheless sufficiently stable to publish. This 
publishability role is too arbitrary. A more flexible 
criterion based on a GVF as a measure of reliability 
is being developed. When the estimate of relative 
variance using CGVF is "sufficiently small", we 
would publish. A definition of "sufficiently small" 
is yet to be determined. 
6. CONCLUSIONS 

Generalized Variance Functions that relate 
relative variance to sample employment, H (number 
of months since last benchmark revision), and the 
finite population correction factor, appear to be 
adequate predictors of sampling variability. In 
addition to computational simplicity of the GVFs, 
the smoothing GVFs induce is an implicit 
borrowing of strength across estimation cells. The 
modest increase in bias of the GVF variance 
estimator for an estimation cell is more than 
compensated for by variance reduction, as the 
entries in Table 2 indicate. We are continuing to 
study refinements of the G VFs outlined here. Of the 
three possibilities, the generalized variance function 
that appears best (simple, intuitive, and it parameters 
were readily estimable) is CGVF: 

RV = Exp[(2/3) + (2/3)Log(H) + 
Log((1/b)- ( 1/LR))] = (1.93)(g/b)n(2/3), 
where RV is the relative variance of the link relative 
estimator of total employment in an estimation cell, 
b is the total employment for the sample units in 
that cell, and g is the cell's finite population 
correction factor, g=l-(b/LR), LR = 

H 

LR i~ - (BM) 1-I ~j is the link relative estimate for 
j=l 

the cell. 
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