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Background 
In order to inform policymakers about the 

economic consequences of a particular policy 
change, microsimulation models are often used. 

In order to make economic estimates for 
many national totals for a given population 
subset for a specific year, economic 
microsimulation models must make use of 
estimates derived by combining results from 
several different sample surveys [Citro and 
Hanushek, 1991]. This requirement to use 
multiple surveys arises from two sources. 

1. Many surveys are not conducted every 
year. For instance, medical care expenditure 
data was last collected in the National Medical 
Expenditure Survey of 1987 (NMES, sponsored 
by the Agency for Health Care Policy and 
Research (AHCPR)). Many current estimates of 
medical expenditures rely on NMES results 
adjusted with results from other sources. 

The year of data collection is often prior to 
the year of interest. In this case, projection to 
a future year (e.g. 1992) may involve the 
combination of data from several surveys with 
assumptions about changes in demographics to 
produce an estimate. For instance, to produce 
a future estimate of medical expenditures, one 
might develop trends in changes in usage from 
the National Health Interview Survey (NHIS), 
sponsored by the National Center for Health 
Statistics (NCHS), apply this change to an 
expenditure per capita developed from NMES, 
adjust for trends in population growth from the 
Census and adjust for projected inflation. 

2. Certain data elements are not collected in 
all surveys. For instance, if NHIS collected 
information on demographic characteristics and 
health status to represent the entire nation and a 
researcher independently developed a regression 
model relating health expenses to these 
characteristics, using data from another source, 

then one could estimate health expenses for each 
sample person in the HIS and use the weighted 
sum of these estimates to estimate national health 
expenditures. 

Such techniques are regularly be used to 
make estimates of current or future economic 
totals for the nation. However, in spite of this 
important usage, little has been done to measure 
the error associated with such estimates [Citro, 
and Hanushek, 1991]. 

As with any statistical estimator, the 
estimator can have variance or random error and 
bias or fixed error. Variance can be caused by 
the random sampling process and other random 
errors caused by interviewers, respondents and 
processing. Bias can be caused by systematic 
errors, such as, a tendency by all respondents to 
overestimate a particular expenditure. Bias in 
microsimulation can also be caused by an 
erroneous assumption, such as, assuming a 
certain reaction by consumers to a tax. If 
consumers do not react in that manner, estimates 
could be biased. 

Such bias can only be determined by 
comparison with "truth." When comparing 
estimates of multiple scenarios, which vary with 
underlying assumptions, an estimate of the size 
of sampling error can be useful. For instance, 
when comparing estimates of projections of cost 
under alternate scenarioes with current costs, it 
is of great benefit to the policymaker to realize 
that differences between results obtained under 
the various scenarios or from current values are 
not statistically significant when one considers 
the size of sampling errors for the estimates. 

Estimators and Variances 
'Aging' is the process of reweighting data 

from a base survey conducted in a previous 
period, using data from more recent surveys to 
provide an updated estimate. In the case we will 
examine, data from the 1977 National Medical 
Care Expenditure Survey (NMCES) will be 
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adjusted to the year 1987 using the Current 
Population Survey (CPS), the 1977 and 1987 
National Health Interview Surveys (NHIS) and 
the Consumer Price Index (CPI). The process 
of 'aging' data is implemented in the following 
m a n n e r .  

Let wgt~ be the weight for the kth unit 
within the ith population cell defined by 
demographic factors and expu,, the health care 
expense value for the unit from the base survey, 
NMCES. If for each unit we define a new 
weight nwa, and new expense nexpe where 

P. 
nw~k = wgtik*--L' and 

Oi 

nexp ~k = e x p , -  CP • CU~ where 

P~ is the cell population from the CPS (1987) 

Oa is the cell 
(1977) 

population from the NMCES 

CP is a price change measured by the Consumer 
Price Index (CPI) from 1977 to 1987 and 

CU~ is a change in utilization measured by the 
ratio of the per capita visits for a given health 
care service from the 1987 NHIS relative to 
1977 NHIS for the ith cell. 

An estimate of expenditures across a set of 

demographic cells i E S , which are mutually 
exclusive and exhaustive is 

E = Z~nw~k * nexp~ 
i k 

= EP~ * PC~ * CP * CU i , where the 
i 

sums are for all subcells i in S and PC~ is the per 
capita expenditure for the ith cell from the 
NMCES. 

Because the factors are independent for each 
i, this is the sum of products of independent 
estimators. This means that covariances across 
surveys are zero, but can be non zero within 

surveys. Letting E~ = P~ • pC, o Cpo CV,  

E = Z Ei Where the sum is over all cells used 
to define the universe for E. Then 

v a t  (z)  = ~ Var(Z~ + r, r, Cov(E, ,e: ) .  

EIE,] = E [P,loE[PC, loE[CeloE[CU,]. 

Var(E,) = E[E~] - E [ E . ]  2 

= E [P~]- E [ p c 2 I * E  [Cp2I*E[CU~] 

- E[E,] ~ 

= [E[P~] 2 + Var(P,)I[E[(PC,] 2 + Var(PC,)] 

[E[CP 2] + Var(CP)] [E[CU2] + Var(CU~)] 

- (E[P,] .E[PC~].E[CP].E[CUi]):  

A similar formula can be developed for 
Coy fE~, E~. 

For two independent variables x 
approximation is [Kish] 

and y an 

Var(xy) = E[x] 2 Var(y) + Ely] 2 Var(x). 

For 4 terms the expansion is simple. Given 
w,x,y and z independent 

Var(wxyz) = (EIx]*ELv] °E[z]) 2 Var(w) + 

+ (E[w],E[x]:E[z])  2, Var(y) 

+ (Nw]oEIy]-Z[z]) :o Var(x) 

+ (E[w]- El:x] •EIy]) 2 Var(z). 

Similar approximations exist for covariances. In 
practice the expected values are approximated 
with their sample values. To estimate these 
terms we simply evaluate the conditional 
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variances of each of the terms given the others. 

For instance, x 2" y2 z 2 Var[w] the estimate 

for the first term above is Var w [wxyz]xyz]. 

Thus we may approximate Var [wxyz] as 

Var[wxyz] = Var w [wxyz/xyz] 

+ Vary[wxyz/wxz] 

+ Va C [wxyz/wyz] + Vat'.[wxyz/wxy] 

For a sum of two products xly  1 + x2y 2 of 

independent variables 

Var[xlY~ +x>v2] = Var[x~Yl] + Var[x>v2] 
+ 2 Cov (x, y,, x2 y2) 

Using these formulas for approximate variances 
and covariances, we can show that an 

approximation of Var(E) = Var(}2Ei) is 
, u  

[rarE~PC, ' s, CP, CU~ ' s) 
i 

+ Var (E /P . ' s ,PCi ' s ,  C U i ' s )  

+ Vat  (E /P"  s, CP, C U'  s) 

+ V a r ( E / P ' s , P C i ' s ,  CP ). 

which is the sum of the conditional variances of 
E over each of the surveys given the others are 
fixed. 

Empirical Results 

In order to examine the variances of sums over 
many cells and to examine relationships of 
variances for different models we calculated 7 
models for each of 3 different types of 
expenditures. The models were created by 
breaking the population into finer and finer sets 
of demographic cells. The variables used to 
define these cells were: age, 5 levels, sex, 2 
levels, poverty status, 3 levels, insurance 

coverage, race, 2 levels, and household size, 2 
levels. 
By letting the first model contain only 1 cell and 
progressively adding variables we created 
models with 1, 5, 10, 30, 90, 180 and 360 cells. 
This essentially created a series of model 
estimates each which assumed another variable 
related to health care expenditures. 
For three types of expenditures and the total of 
the three expenditures: 1. outpatient physician 
visits, 2. emergency room physician visits, and 
3. all other physician visits we created estimates, 
if the model allowed, (A model which did not 
use a given variable to define the model was not 
used to create estimates for subpopulations 
defined by that variable. For instance the 5 cell 
model which only was defined by age was not 
used to make estimates of totals by sex.) for the 
total population and 17 subpopulations: total 
population (1), total by sex (2), total by age and 
sex (10), and total by age (5). 

This allowed us to empirically compare 
estimates and their relative errors for the 
different models. Estimates of variances were 
calculated using the computer package 
SURREGR [Holt, 1977] for the NMCES and 
NHIS surveys. For the CPS variances we used 
generalized variance formulas. For the CPI we 
used results for all health care [Leaver, et. al, 
1991] and prorated variances to subindexes 
according to their relative importances. In 
general the CPI and CPS variances were smaller 
and contributed little to overall variances. 

Tables A, B and C show a set of representative 
results using the 7 models to derive health 
expenditure estimates for the entire population, 
for the following health care services, other 
physician visits, outpatient visits and emergency 
room visits. From these results one can observe 
three patterns. 

1. The standard errors, as one might expect, 
are greater for model estimates than for an 
individual survey. For instance, for other doctor 
visits for the entire population, the NMCES 
relative error is about 1.8 % versus the 2.85 % 
for the model error. 

2. The large changes in standard errors for 
different models seem to correlate positively 
with large changes in the estimates. For 
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instance, for outpatient visits for the entire 
population, the largest movement in standard 
errors is between the 1 and 5 cell model which 
is when the largest movement in the estimate 
occurs. This pattern occurs to a lessor extent 
for many of the other estimators. 

3. When there is little change in the 
estimates, such as, with other physician visits, 
there can still be a pattern of change in the 
standard errors, but the direction fluctuates 
and the relative sizes of the changes are less than 
those where there are large changes in the 
estimates. 

While some of these differences can be caused 
simply by the variances in the estimates 
themselves, one may analyze the theoretical 
variances to show that one should expect such 
patterns. We will show these results in the 
following section. 

Standard Error Analysis 
The reason the standard errors of the 

estimates are larger than those of the individual 
survey is easy to see if one examines the results 
for a model with a single cell. For a single cell 
estimate we have seen that 

Var(E) = E[P~, PC~, CP] 2, Var(CU) 

+ E[P ,  PC,, CU.] 2 • Var(CP) 

+ E[P~, CP, CU~] z, Var(PC) 

+ E[PC~, CP, CU,] • Var(P). 

Dividing by E[P~, PC~, CP, CUi] 2 gives 

(RE(E,)) 2= (RE(P;)) 2 +(RE(PC,)) 2 +(RE(CP)): 

+ 

Thus, the square of the relative standard error 
for the single cell model is equal to the sum 
squares of the relative standard errors of each of 
the surveys used. This relationship combined 
with other relationships between standard errors 

for models with differing numbers of cells may 
be useful in helping make rough approximations 
of relative errors without having to perform the 
actual extensive variance calculations involved. 

We can examine the relationships between 
models by using the structure of generalized 
variance formulas published with many surveys 
[Schoenborn and Marano, 1988] and the 
linearized approximation used to approximate 
variances. Consider a single cell model and an 
associated multicell model. For simplicity we 
will assume only results from two surveys are 
multiplied together. One survey provides a 
population, the other a ratio, such as, a per 
capita. 

The estimate for the single cell model is 

E = a T • X T where 

X T is the total population = E x~ 

a T is the weighted ratio = ]~ p a i 

where x~ is the population for the ith cell and a~ 
is the per capita for ith cell and p~ is a weigh't 

for the ith cell, E p~=l. 

The estimate for the multicell model is 

E m - - -  ]~ acr e. 

From generalized variances we may show the 
following 

Var (x~) = bx~ 2 + crs 

Cov(xi, xj) = b~ xj 

Var(a~) = a~ 2 (d + e/s~) 

Cov (a~,aj) = aj aj (d) 

where b, c, d, e, f are constants and s~ is a size 
variable related to the cell. For instance, for a 
per capita from the 1977 NMCES, the size 
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variable would be the 1977 cell population. 

Using these results and the formulae derived 
earlier using conditional variances 

Var (E) = Var (E/XT) + Var (E/aT) and 
Var (Em) -- Var (E/x~'s) + Var (E/a~'s). 

Substituting we obtain 

Var(E) a~r (bx2+cxr) 2 2 ~. ~ +xr(ar)(d+e/Sr  ) 

Vat(Era) -~ b E Ea,Gxcr j +cEa~x, 

2 2 
+d'E, Za,atxY J + e E x , a , / s ,  

Note EEaa.lxcr i = (Eacr) 2 = E,Z. 

We may examine the differences of Var(E) and 
V ar(Em) term by term. 

Var(E) - Var(E,,,) = (b ÷d)(E 2 - EZra) 

+ c[xr[a2E a~'X/XT)] 

2 2 2 2 
+ e [ x r a r / s r - E  a~ "xi/s~] 

As one can see, the first term varies directly 
with changes in the estimate whereas the other 
two terms all measure variabilities among the 
values of the a~'s weighted either by the values 
of s~, or x~. Thus the first term shows why large 
changes in expected values relate to rates of 
changes; whereas, even with approximately 
equal expected values, slight variations in the 
relationships of the variables can cause different 
patterns in variances. 

One can demonstrate the potential effects of the 
latter terms with an example. If one considers 
a two cell model where s~ = x~ and x~ = 1 + e, 
x2 = 1-e. Then ifa~ = 1 + e, a2 = 1 - e o r i f  
a~ = 1-e a2 = 1+ e, the change in expected 
values have the same absolute change. For case 

o n e  E[Em] -- 2 + 2 e 2, for the second case 
E [Em] = 2 - 2e 2. However, the variances can 
be quite different. (In these generalized 
variances, the values of c and e are much larger 
than b and d.) [Waite, 1991, Schoenborn, et. 
al., 1987] 

For the first case, the difference 

Var(E) - Var (E , )  =(b +d)( -  8e z - 4 E  4) +C( -6e 2) 

+e(-6¢) 2 

For the second one 

Var(E) - Var(Em) =(b +d) (8e 2 -4e 4) +c(2e 2) 

+e(2e) 2 

Since c and e are 
generally greater than b and d for the first 
example Var (Era) > Var (E). The opposite is 
true for the second case. It seems that if 
expected cell values for the surveys are 
positively correlated, the variances for the 
models with more cells will rise, even with 
equal expected values. Thus, final relationships 
of variances of models also relate the 
correlations of the cell estimates for the 
individual survey estimates. 

Conclusions and Recommendations 

As we have seen, the relative error for these 
multicell models have several features" 

1. They vary with the expected values, much 
the way variances for certain totals from 
standard surveys vary with the size of their 
expected values. 

2. They are larger than the variances for a 
similar estimate from a single survey. For 
a single cell model the variances can be 
estimated using relative errors from each 
survey 

3. For models with large numbers of cells, 
variances of these estimates are very expensive 
to calculate because of the need for variances, 
covariances and estimates from each individual 
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survey. 
However, there may be alternative 

estimates. If one had generalized 
variance formulas for each survey one 
could try to construct a generalized 
variance for this estimator or to 
approximate the RSE. Another useful 
approximation might be to use the 
single cell approximation of RSE. 

Table A: Other Physician Visits 

Group Cells in No. of 
Estimate Cells in 

Model 

Although it would be best to calculate 
actual errors, if costs prevent this being 
done, efforts should be made to provide 
policy makers with approximations so 
that potential accuracy of these estimates 
are known. 

(references upon request) 

Estimate/10 ~° Std. RSE X 100 
Error/109 

NMCES x 
100 

RSE 

All 1 1 
5 5 
10 10 
30 30 
90 90 

180 180 
360 360 

4.233 1.206 2.85 
4.272 1.212 2.84 
4.274 1.216 2.85 
4.274 1.203 2.81 
4.276 1.204 2.82 
4.247 1.184 2.79 
4.275 1.138 2.66 

1.79 

Table B: Outpatient Physician Visits 

Group Cells in No. of 
Estimate Cells in 

Model 

Estimates/10 9 Std. RSE x 100 
Error./109 

NMCES x 
100 
RSE 

All 1 1 6.864 
5 5 7.965 
10 10 7.938 
30 30 8.313 
90 90 8.354 
180 180 8.436 
360 360 9.160 

.5945 8.66 
• 8125 10.20 
.7659 9.65 
.8541 10.27 
.8777 10.51 
.9410 11.15 

1.1201 12.21 

6.09 

Table C: Emergency Room Physician Visits 

Group Cell in No. of Estimates/109 
Estimate Cells in 

model 

Std. Error/109 RSE x 100 NMCES 
RSE x 100 

All 1 1 5.048 
5 5 5.317 
10 10 5.378 
30 30 5.513 
90 90 5.445 
180 180 5-. 731 
360 360 5.756 

.3826 7.58 

.4065 7.64 

.4138 7.69 

.4527 8.21 

.4462 8.20 

.4913 8.57 

.5095 8.85 

3.58 
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