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1. Introduction 
We consider the estimation of a finite population 

mean of a continuous outcome variable Y based on a 
sample survey, in the presence of an ordinal post- 
stratifier W with known population distribution. 

Suppose W has H levels. For post-stratum h, let N h 

be the population size; nh, the sample size; Y~, the 

value of Y for the i m individual in the population; and 

y~, the value of Y for the i m sample observation. Let: 

N = ~ "  N " n = ~ "  • h h ' h n h ,  

Y'=Zh. ,Y~, . IN;  ~ = Z , Y ~ I N h ;  Y ~ = Z ,  Yh,.Inh 

denote respectively the total population size, the total 
sample size, the population mean, the within-stratum 
population mean, and the within-stratum sample mean. 

It is assumed that given the value of W, the 
probability of inclusion in the sample does not depend 
upon the value of Y. Two standard approaches are to 

estimate Y by (a) the sample mean .7= ~'~hPh,Th, 

where Ph = nh / n; and (b) the post-stratified mean 

tip, = ~"~h PhYh, where Ph = Nh / N. The sample mean 
m 

is an appropriate estimate of Y when Y and W are 

unrelated. Even if the variables are related, .7 is 

unbiased so long as the probability of inclusion in the 

sample does not depend upon W.  However, ,7 does 

not use information from the known distribution of W 
so that it may not be the best estimate. Due to 
sampling variability or systematic bias in the sampling 

procedures, the proportion Ph falling within stratum h 
of a given sample deviates from its respective 

population proportion Ph. Since Y=~'hPhFh and 

Y = ~f'~hPhYh, Y is biased for Y" conditional upon the 

sample configuration of W.  

Given a set of sample values for W, ,Tp, is con- 

ditionally unbiased and may have much a smaller 

mean squared error than y (Holt and Smith 1979; 

Little 1993). Although .7~, incorporates information 

from W,  .Th is used to estimate the stratum mean, 
whether a stmaun contains a few or many observa- 
tions. When a stratum contains few observations, the 
estimator of the stratum mean might be improved by 
borrowing strength from information from neighboring 
strata. Also, in our setting, the post-stratified mean 
does not reflect the ordinal nature of the post-strafifier. 
That is, it has the same form as for an unordered 
categorical post-stratifier. 

Both .7 and .Tin can be written as 

Z h.i W h Y h7 • / Z h .i W h 

where w h is a weight attached to each observation in 

st.ralama h. Conditional on the observed values of W, 
the variance of these estimates is 

where S~ is the within-stratum variance of Y~. For 

Ym, wh = Ph / Ph, and for y ,  w h = 1 for all h. When 

Ph is much smaller than Ph, -~m reties greatly upon 

each observation in that stratum, inflating the variance 

of the final estimate. In fact, P h can equal zero, in 

which ease adjustments are needed for ~m to be 

defined. 

Modifications of y~, that reduce its variance have 

been proposed, which can be written as weighted 
averages of the observations where the original post- 
stratification weights have been smoothed to reduce 
variability. One method is to mmcate the post- 
stratification weights larger than some maximum 
allowable value. Simultaneously, smaller weights are 
adjusted upwards. The truncation point may be fixed 
in an ad-hoc way, or based on the data (Potter 1990). 
A second approach is to pool or collapse strata. 
Strategies for choosing how and when to collapse 
strata have been suggested by Kalton and Maligalig 
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(i991), Little (1993), and Tremblay (1986). If 
sampling or nonresponse depends upon W,  modeling 
of these rates has been suggested (e.g. Kalton and 
Maligalig 1991). Observation weights can be based on 
the estimated rates, which will usually be smoother 
than the observed rates. 

2. Proposed Methods 

The ideal compromise between .V and ~ would 

use the ordinal structure of W to aid in the prediction 
of the stratum means. It would control variance by not 
weighting any individual observation too highly. 
When the sample means are well-observed and Y is 
strongly related to W,  the estimate should look like 

Y ps. When Y and W are not strongly related, the 

estimate should look like .p. Also, since surveys 
contain large numbers of variables, the ideal method 
would have general applicability without requiring a 
lot of hands-on modeling for each outcome. However, 
if arbitrary choices are needed for the sake of general- 
ity, the resulting estimates should be insensitive to 
these choices. 

We consider methods based on models for the 
outcome, which can be viewed within either a super- 
population or Bayesian framework. The general form 
of these models is 

and 

/.t -- Nt¢ (X/~, D), (2) 

where /.t = (/.it,... ,/.t n )r ,  X is a known H x Q 

design matrix, /3 is a Q x 1 vector of unknown 

parameters and D is an H x H covariance matrix. 

For individuals not included in the sample, Yh~ can be 

estimated by ~h, its expected value given the data. 
The estimated finite population mean is 

~-~h[n,Yh +(Nh -nh)~h]/ N= Y +~-'~ (eh --Ph)~h 

The estimates It h of the stratum means shrink the 

sample means ,~h towards the hth element of Xfl, with 
a degree of shrinkage that tends to zero as the within- 

stratum sample size n h increases. Hence the estimator 
behaves like the poststmtified mean in large samples, 

but smoothes the within-stratum means when the 
sample size is small. 

Previous work has proposed inference under the 
exchangeable random effects (X1LE) model obtained 

by setting X = I, the identity matrix, and D = lo'2, 

2 is the between-stmnnn variance, in (2) (Holt where cr 

and Smith 1979, Scott and Smith 1969, Little 1983, 

2 is set equal to 1991, Ghosh and Meeden 1986). If cr 
A . = .  

zero then /~h - ~ ,  P h = Y and the final estimate is 

2 is set equal to infinity, a fixed effects also .p. If cr 

ANOVA model is obtained, ~t h = y~ and the final 

2 is estimated from the data (an estimate is Y r" If cr# 

empirical Bayes approach), the resulting estimate of Y 

shrinks the means y~ towards .P. While these 
properties are appealing, simulations in Little (1991) 
indicate that model-based confidence intervals are 
sensitive to departures from the assumption of 
exchangeability in the post-stratum means, as noted by 
Morris (1983) in the general context of empirical 
Bayes estimation. The exchangeability assumption is 
questionable when W is ordinal, since a systematic 
relationship between Y and W might be expected. We 
develop extensions of the XRE model for the ordinal 
setting. 

Two ways are suggested for incorporating the 
ordinal nature of W in the model (2). The more stan- 
dard approach is to include functions of W in the 
construction of X so that the mean structure of ~t 

depends upon W. In particular, the regression (REG) 
model for the stratum means sets 

x I o xi 
Another approach is to model D to incorporate 

greater positive correlation between/.t h and/Jh' when 

h and h' are close in value. For the AR1 model of the 
means, 

765 



. m 

1 

1 
2 1 , D=cru x 

o . o  

1 

I p ... pH-) 

p I ... pn-: 

p2 P ... pH-3 

.pn-I pn-2 ... 1 

The REG and AR1 models each contain four parame- 
ters, compared with three for the XRE model. Of 
course these models could be elaborated, or a 
combined REG / AR1 model (with five parameters) 
could be fitted with some loss of parsimony; here we 
focus on the properties of the KEG and AR1 models 
treated separately. 

Assume that exactly G strata contain data. The 

sufficient statistics are y and S where y is the 

G x 1 vector consisting of the ordered observed 

stratum means and S = '~7' ( y ~ _  yh) ~ " Let Z be 

the G x H submatrix of the H x H identity matrix 

with row h deleted if n h = 0. Let R be the G x G 

diagonal matrix with the gth diagonal element equal to 

cr 2 / n  h if h is the g~ stratum for which n h > 0. 

Define V = Z D Z r  + R. Conditional on the observed 
W,  

y -- N ~ ( Z X f l ,  V) 
and independently 

S /o .2  

This model for the observed sample means is a 
special ease of a random effects model. Following 
Laird and Ware (1982), the resulting maximum likeli- 
hood (ML) estimates are 

= x z v-'y 
and 

= + D z  ( y -  zx ) 

when o ~ and o~u are known. When the variance 

parameters are unknown, maximum likelihood 

estimates are used instead so that D becomes 1) and 

V becomes ~r. Let y ,  and yo denote the estimate of 

the finite population mean based on the REG and AR1 

model respectively. For these models, kt h is a weighteA 

average of the sample observations. The estimates ~, 

and rio can also be written as weighted averages of the 

observations for some set of smoothed weights, w h . 

3. An Example 
The Los Angeles Epidemiologic Catchment Area 

survey of mental health was based on an equal 
probability sample of households in two areas, East 
Los Angeles and West Los Angeles (Eaton and 
Kessler 1985). Population distributions within these 
catchment areas were taken from the 1980 U. S. 
Census. Dam for the age-related sampling proportions 
and population distribution are given in Little (1993). 

Eight demographic groups defined by Ethnicity 
(I-I = Hispanic, N = Not Hispanic), Gender (F or M) 
and Catchment Area (E or W) were each analyzed 
separately. Sample sizes varied from 112 to 738. The 
outcome variable Y was a score measuring depression 
based on a set of questions from the survey. Although 
not continuous, Y takes 71 distinct values from 0 to 
51. The sample was post-stratified on age, W,  with 
each year representing one stratum. Respondents 
varied from 18 to 96 while individuals in the popula- 
tion were recorded at age 102. No demographic group 
had individuals in all strata. Data from 3 groups, 
HMW, NME and NMW, are presented here. The 
left panels of Figure 1 show Y plotted against W 
showing an apparent downward trend with age but 
with lots of variability especially at younger ages. 

Plots of Ph and Ph plotted against age (not included 

here) suggest that some age ranges may be 
systematically undersampled. 

The AR1 and KEG models were both applied to 
the data, using a modified version of the scoring 
algorithm described by Jennrich and Schluchter (1986) 
to maximize the likelihood. Penalty functions were 

used to insure that ~.2 > 0, ^ 2 c r u > 0  and 0 < ~ < 1 .  

" 2  Under the constraints, o" u was essentially zero in 

three eases for the AR1 model and six eases for the 

REG model. For the AR1 model, this means that/3 is 
meaningless and it is not reported. The estimated slope 
is always negative under the REG model. Because the 
AR1 model describes the stratum means rather than 
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the observations,/3 can be quite large, greater than 0.9 
in two eases. A simple intercept model for the out- 
comes was also fit to the data. This is the simplest 

super-population model that leads to the estimate .~. 
For the AR1 and the REG models, Table 1 contains 
the difference of the log-likelihood from this simplest 
model as well as maximum likelihood estimates of the 
parameters. 

The fight panels of Figure 1 show bt h, the 
estimated ~ p r ~ e t ~  nmms, l~lotte.A against age, 
fi'om post-stratification, and from the AR1 and KEG 
models. For the sample mean, the predicted means are 

identically equal to ,~. Straight lines correspond to 

c3"~ = 0 since the predicted mean is then just the 

estimated fixed effect. The NME group has the least 

smooth predicted values and the largest ratio of ^ : o'uto 

o':. This group also has the smallest meaningful 
estimates of p for the AR1 model. Plots of the 
weights (not shown here) indicate that for both models, 
the variability of the weights is small compared to 
truncation-based methods that have been proposed. 
The ARI model displays weights that vary with the 
observed sampling rates whereas the weights of the 
REG model are usually linear. 

Table 2 shows yo, y,,  ,~ and Y ps for three of the 

groups. In general, all four estimates are similar for 

: / ( ~  wh): this data set. Also listed is Q = ~ "  w h 

which is based on expression 1 and is meant to reflect 
the fmite population sampling variance of the esti- 
mates. This shows that both model-based estimates 
are considerably less variable than the post-stratified 
mean, which is not surprising given the small vari- 
ability of the weights. 

5. Conclusion 
The REG and AR1 models for the post-stratum 

means appear reasonable generalizations of the XRE 
model for smoothing post-stratum means based on an 
ordinal post-stratifier. More detailed assessments of 
these methods, on populations simulated under a 
variety of conditions, are needed to answer the ques- 
tion of which method is preferable for routine survey 
use. Smoothing based on a model like REG and AR1 

seems more principled than arbitrary proc~lures that 
truncate the weights. The models in effect provide 
different weights for each survey outcome, and hence 
involve more computation than methods that provide a 
single smoothed weight for all outcomes. But compu- 
tation is less of an issue in the era of high-speed 
computers, and any procedure directed at reducing 
variance should tailor the weights, depending on the 
degree of association of the post-stratifier with the 
outcome. 
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TABLE 1. Maximum Likelihood Estimation for AR1 and REG Models 

Difference in MLE of MLE of MLE of MLE of MLE of 
Group Model Log-Likelihood Intercept cr 2 or2 /9 Slope 

/ -  

HMW AR1 0.00 7.90 51.15 0.00 NA 
N-'-11448, n--112 KEG 0.63 10.05 49.59 0.00 -0.06 
NME AR1 1.47 6.66 37.18 6.46 0.30 
N-11287, n-124 REG 1.98 8.66 37.37 5.64 -0.04 
NMW ARI 2.01 5.84 47.66 0.98 0.92 
N-53593, n-711 REG 2.79 7.81 48.01 0.07 -0.04 

TABLE 2. Estimates of Overall Means from Four Methods 

HMW NME NMW 

y'-, 7.90 (0.0089) 6.67 (0.0083) 6.14 (0.0014) 

y'-, 7.85 (0.0090) 6.74 (0.0083) 6.17 (0.0014) 

7.90 (0.0089) 6.61 (0.0081) 6.25 (0.0014) 

y~  6.83 (0.0141) 6.62 (0.0124) 6.04 (0.0017) 
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