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I. INTRODUCTION 
In survey sampling practice, unequal sampling 

weights (the inverse of the selection probabilities) 
can be both beneficial and deleterious. Extreme 
variation in the sampling weights can result in 
excessively large sampling variances when the data 
and the selection probabilities are not positively 
correlated. 

In some survey situations, the survey statistician 
may impose a trimming strategy for excessively 
large weights. Because of the weight trimming, 
the survey statistician will usually expect an 
increased potential for a bias in the estimate and a 
decrease in the sampling variance. The ultimate 
goal of weight trimming is to reduce the sampling 
variance more than enough to compensate for the 
possible increase in bias and, thereby, reduce the 
mean square error (MSE). 

In this research, I investigated the effect of the 
weight trimming on simple linear regression 
coefficients using a population that can be fully 
enumerated. The specific empirical goal is to 
evaluate the effect of the weight trimming on 
estimates of linear regression coefficients in terms 
of; (a) the consistency and variability of trimming 
levels, (b) the change in the sampling variance 
and in the MSE, and (c) the coverage probability 
of confidence intervals. 

II. WEIGHT TRIMMING PROCEDURES 
A. Overview 

Five weight trimming procedures are discussed 
in this paper: The procedures are: 

(1) the estimated MSE procedure using 
regression coefficients 

(2) the estimated MSE procedure using mean 
estimates 

(3) Taylor Series (TS) procedure using mean 
estimates 

(4) the "NAEP procedure" (using only the 
sampling weights) 

(5) the Weight Distribution procedure (using 
only the sampling weights). 

The "NAEP procedure" has been reported in 
conjunction with the National Assessment of 
Educational Progress (NAEP) and, for brevity is 
referred to here as the NAEP procedure (Benrud et 
al. 1978). An alternative version of the NAEP 
procedure, which uses data, is described by 
Johnson et al. (1987). 

B. Procedures 
Assume a sampling frame of N units and 
Yk = the observed value for the kth unit. 
r~ -- the selection probability for the kth unit 

when a sample of size n is selected and 
assume r~ is less than 1 for all k; 

w k = the untrimmed sampling weight for the 
kth unit; that is, w k -- 1 / rr~. 

Wkt - the sampling weight for the kth unit 
when a weight trimming strategy is 
used. 

1. Estimated MSE Trimming Using Regression 
Coefficients 
In this procedure, an estimate of the MSE for 

selected data items is evaluated at various 
trimming levels to empirically determine the 
trimming level (Cox & McGrath 1981; Potter 
1988). The assumption underlying this procedure 
is that, for a set of weights and data, a point exists 
at which the reduction in the sampling variance 
resulting from the trimming is offset by the 
increase in the square of the bias introduced into 
the estimate. In this procedure, 
the MSE( 13 t) is estimated by 

Mge  . . . .  
where 

13 = the estimate of the regression coefficient 
- using th.e ur~trimmed weight.s; 
{3, = me esumate oi me regression coefficient 

using trimmed weights; and 
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Var(~,) = the estimated variance of [3, using the 

standard TS variance approximation. 
The procedure is implemented by repeatedly 

computing the estimate of the MSE for regression 
coefficients at differing levels of weight truncation 
and the 'optimal'  level of truncation is the point 
that minimizes estimated MSE. 

In the empirical study, 20 candidate trimming 
levels were used and 20 sets of weights were 
computed for each sample. The following 
procedure was implemented: 

1. For each regression, the estimated MSE is 
computed for each set of weights and assigned a 
rank (1 to smallest value and 20 to the largest 
value). 

2. The estimated squared relative bias is 
computed for each regression coefficient using the 
equation 

Rel B/as (1~,)~ = [(~, - ~ ) /  I~] 2 .  
3. An average rank is computed for the 

estimated MSEs and relative bias across the 
regression coefficients for each set of weights. 

4. These two average ranks are then averaged 
and the lowest combined average rank is the 
trimming level. 

2. Estimated MSE Trimming Using Mean 
Estimates 
In this procedure, I used basically the same 

procedure described above except for using 
estimates of the mean. The MSE estimate for 
selected data items is evaluated at various 
trimming levels to determine empirically the 

trimming level. In this procedure, the MSE(Yt) 

was estimated essentially by 

^ ~ ~ ~ ^ 

MSE(Y,) - Var(Yt) + (Yt-  ~,)2 
where 

A 
m 

(Yt) = the estimate of the mean using the 

untrimmed (trimmed) weights; and 

Vfir t) = the estimated variance of Y,. 

As stated previously, the estimated MSE is 
used to identify a trimming level among a set of 
candidate trimming levels that, jointly for multiple 

data items, has the smallest estimated MSE. The 
following procedure was implemented: 

1. The estimated MSE is computed for each 
data item for each set of weights and assigned a 
rank. 

2. An average rank is computed for the 
estimated MSEs across the data items for each set 
of weights and the lowest average rank is defined 
as the trimming level. 

3. The TS Procedure Using Mean Estimate 
The TS procedure uses the estimated MSE and 

the estimated relative bias computed for each data 
item at multiple candidate trimming levels. The 
estimated MSE is computed using a derived form 
for TS linearized variate. This procedure is 
described in detail in Potter (1990). 

Assume a sample of size n is selected with 
unequal probability and with replacement. The 
following derivations are conditional on a fixed 
weight trimming value of w o for all possible 
samples of size n. All weights below this value 
are adjusted by a factor A s so that the original 
weight sum (Ws) for the sample is preserved. The 
usual estimator can be written as a function of 
weighted totals. That is, 

A 

Y t = Zn Wkt Yk / ~n Wkt 
where E n denotes the sum over the sample n. 

The linearized variate for variance estimation 
is: 

A 

Zk 

where 

A 

-- (1//7) { Wkt (Yk- YNT) 
A 

- Wk [~n 1;k Wo (Yk-  Ytcr) / / 7 ]  }" 

"~k = 1 if weight is trimmed; 0 otherwise; and 
^ 

Yrrr = En (1 - 1;k) w k Yk / En (1 - 1;k) W k 
For the TS trimming procedure, the estimated 

MSE and the relative bias are computed for each 
data item Q (~-1 ..... m): 

1. an estimated MSE measure: 
^ A 

MSE 1 = Var( Ya ) + B i ~  ( Ya )2, 

where 
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. .  . . .  - - .  

B ~ z s ( Y a )  ffi (Y, - Y).  

the relative bias: 

RelBias I = B~2s ( Ya) /Yt"  
For the empirical study, the same procedure 

described for the estimated MSE of the regression 
coefficients were used. Because multiple data 
items were used, the identified ~mming level may 
not be the smallest estimated MSE and bias for all 
or any of the data items. 

4. The NAEP Procedure 
In the NAEP procedure, the relative 

contribution is limited to a specific value by 
comparing the squared of each weight to a multiple 
of the sum of the square weights. That is, 

2 2 
w k < C ~ , n W k l n o r  

W k ~ K  n . (I) 
2 

where K n --- (c Z~w k /n)U2. 

The value for c is arbitrary and can be chosen 
empirically by looking at the distribution of the 
square root of the values of 

2 2 
n w k  l ~2n W k • 

In the NAEP algorithm, each weight in excess 
of K n is given this value and the other weights are 
adjusted to reproduce the original weight sum. 
The sum of square adjusted weights is computed 
and each weight is again compared using equation 
(1). For the empirical study, the NAEP procedure 
was allowed to go through 10 iterations, using c ffi 
10. Smaller or larger values of c will generate 
different trimming levels. 

5. Weight Distribution 
This trimming procedure is based on an 

assumed distribution for the sampling weights, and 
no survey data are used. If the selection 
probabilities are assumed to follow a Beta 
distribution, the sampling weight distribution can 
be shown to be of a form that is essentially an 
inverse of a beta variate. The percentiles for the 
cumulative distribution function (Fw(W)) of the 
weight distribution can be computed using the 
complete Beta distribution. The values for the 

cumulative distribution function of the weight 
distribution F w (w) is 

F,,,(w o) =f 1/nw° (1 - u) p-I u a-I du/B(a,~). 
JO 

Estimates for alpha and beta can be computed as 

af[w (nw-l)/ns ] + 2 (2) 

p =(nw-l) [w (nw-l)/ ns~ + I] (3) 

where 

w = ~,. w d n  

2 
s~ - ~,. (w t - w)21n.  

The weight distribution trimming procedure 
compares the distribution of the weights relative to 
the theoretical distribution. 

For the empirical study, the probability of 
occurrence criterion was set at 0.01; that is, a 
weight with a value in excess of Wop where 1 - 
F(w ) ffi 0 01 was tri'mmed to w For the first p • . . . . . . .  • o op  

of 10 iterations, the original weights were used to 
estimate ct and 13 using equations (2) and (3), 
respectively. For the second to the tenth iteration, 
tx and ~l was estimated using the weights from the 
prior iteration. 

III. EMPIRICAL INVESTIGATION 
A. Overview 

The goals of the empirical study are to 
investigate and evaluate the effect of weight 
trimming procedures on simple linear regression 
coefficients from a population that can be fully 
enumerated. 

B. Empirical Study Design 
For the empirical study, county-level data on 

medical resources and demographic characteristics 
of the county population were obtained from the 
Area Resource File (ARF) data base developed by 
the Health Resources and Services Administration 
of the U.S. Department of Health and Human 
Services. A total of 2,989 of the 3,080 county 
units in the ARF data base was used. Excluded 
county units either had a very large (greater than 
200,000 households) or a very small (less than 250 
households) count of households, or were likely to 
have a zero value for one or more of the data 
items (county units in Hawaii and Alaska). Two 
hundred (200) samples of 100 units each were 
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selected using the probability minimal replacement 
sampling procedure developed by Chromy (1979) 
for the PPS selection using the' number of 
households in 1980 as the size measure. 

Seven data items were used for the simple 
linear regressions: 

1. Average temperature in July 
2. Average temperature in January 
3. Birth rate among teenagers 
4. Percentage white age 10-17 
5. Percentage of households with access to a 

telephone 
6. Per capita income 
7. Median family income. 

Six regression equations (R1 - R6) were computed 
with the following dependent (DEP) and 
independent (IND) variable (using the number 
from the list above to denote the variable and r is 
the correlation): 

RI: DEP: 1, IND: 2 (r = 0.733) 
R2: DEP: 3, IND: 4 (r =-0.458) 
R3: DEP: 5, IND: 4 (r - 0.537) 
R4: DEP: 5, IND: 6 (r = 0.583) 
RS: DEP: 3, IND: 6 (r =-0.315) 
R6: DEP: 7, IND: 6 (r - 0.702) 

For the two weight trimming procedures using the 
mean estimator as the trimming estimator, four 
data items were used to identify the trimming 
level. The four variables were chosen because of 
the estimated correlation between the data item and 
the sampling weight across the 200 samples: (1) 
median family income (negative), (2) birth rate 
among teenagers (positive), (3) percentage of 5 to 
17 year old population that are white (zero), and 
the average temperature in July (zero). 

The TS procedure and the estimated MSE 
procedures evaluate statistics for predetermined 
candidate trimming levels. For the empirical 
study, 20 candidate trimming levels were computed 
for each sample. The candidate trimming levels 
were computed as follows: 

a. Trimming level 1 is the next to largest 
weight; 
b. Trimming level 2 is the sum of the next to 
largest and the third largest weight, divided by 
2; 
c. Trimming level 3 is the sum of the next to 
largest, the third largest, and the fourth largest 
weight, divided by 3; 

d. Trimming level 4 to 20 were computed as 
similar averages of the largest weights (excluding 
the largest weight). 
For each trimming candidate level, a set of 

trimmed adjusted weights were computed. For the 
other procedures (as described in Section II), the 
trimming levels were generated within the 
procedure. 

The regression coefficients were computed using 
the untrimmed weights and each set of trimmed 
weights. The sampling variance of each regression 
coefficient was also computed and the MSE, where 
the bias term was computed as the difference 
between the trimmed weight estimator and the 
untrimmed weight estimator. 

C. Stunmary of Results 
The findings of the empirical study show that, 

of the five procedures, the estimated MSE 
procedure using the regression coefficients imposed 
less weight trimming and, as was expected, 
performed the best in terms of the effect on the 
smallest MSE. The TS and the estimated MSE 
procedures using the mean estimator tended to 
perform similarly. Also, the NAEP procedure and 
the weight distribution procedure operated almost 
identically to each other. 

In comparing the TS and the estimated MSE 
procedures, the estimated MSE procedure using the 
mean estimator resulted in the larger average 
reduction (8.0 percent reduction over the 6 
regressions) in the variance over the 200 replicated 
samples than estimated MSE procedure using the 
regression coefficients (5.3 percent reduction) and 
the TS procedure (5.9 percent reduction) for the six 
regressions (Table 1.). As seen in Table 1, the 
range of reduction in the sampling variance was 
the greatest for the estimated MSE procedure using 
the mean estimator (1.5 percent to 11.3 percent) 
than the estimated MSE procedure using the 
regression coefficients or the TS procedure 
(approximately 2 percent to 8 percent reduction). 
In terms of the MSE, the estimated MSE procedure 
using the regression coefficients had an average 
MSE change (relative to the sampling variance 
using untrimmed weights) of 10.2. The procedures 
using the mean estimator exhibited an average 
change in MSE of 26.1 and 19.3 percent for the 
estimated MSE procedure and the TS procedure, 
respectively. Therefore, although the average 
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variance reduction was larger for the estimated 
MSE procedure using the mean estimator, the 
average change in the MSE was substantially 
smaller for the estimated MSE procedure using the 
regression coefficients than for the estimated MSE 
using the mean estimator or the TS procedure. 

Both the NAEP procedure and the weight 
distribution procedure produced almost identical 
trimming levels over the 200 samples. The NAEP 
procedure and the weight distribution procedure 
resulted in an average variance reduction of 3.2 
and 2.9 percent (Table 1) and average MSE change 
of 16.3 and 15.7 percent, respectively. Therefore, 
in comparison to the estimated MSE procedure 
using the regression coefficients, the NAEP 
procedure and the weight distribution procedure 
resulted in more weight trimming. The added 
weight trimming of these procedures resulted is 
less variance reduction and larger MSEs than the 
estimated MSE procedure using the regression 
coefficients. 

The effect of weight trimming on both the 
estimate and its variance can be evaluated by the 
coverage probabilities of confidence intervals. The 
95 percent and the 99 percent confidence intervals 
were computed for each of the 200 samples using 
the untrimmed weights and each of the alternative 
trimmed weights. Table 2 shows the proportion of 
the confidence intervals from the 200 samples that 
contained the population value of the regression 
coefficient (using data from 2,989 counties). All 
confidence intervals performed at below the 
nominal level. The intervals based on the 
untrimmed weights generally covered the 
population value less frequently than the intervals 
based on any of the trimmed weights. The weights 
trimmed using the estimated MSE of the regression 
coefficient estimate generally resulted in 
confidence intervals with higher coverage 
proportions than the intervals based on the 
untrimmed weights. However, the intervals based 
on the other weight trimming procedures tended to 
perform better (higher coverage proportions) than 
the intervals computed based on weights trimmed 
using the estimated MSE with regression 
coefficients. The weights trimmed using the 
estimated MSE with the mean estimate generally 
resulted in confidence intervals with the highest 
coverage proportions of all the weight trimming. 
procedures. 

IV. CONCLUSIONS 
In terms of the five weight trimming procedure 

as evaluated in the empirical study, the two 
estimated MSE procedures and the TS procedure 
utilize the data and an estimate of the MSE, and 
these procedures are preferable to the other two 
procedures. Among these three procedures, the 
results show the importance of using the estimator 
of interest. In previous research (Potter 1990), the 
TS procedure showed some improvement over the 
estimated MSE procedure for estimators of a mean. 
Both fared poorly when compared to the estimated 
MSE procedure using the regression coefficients 
for estimates of the MSE. However, these two 
procedures resulted in weights which achieved 
better coverage probabilities for interval estimates. 

Similarly, the weight trimming from the weight 
distribution procedure and the NAEP procedure 
fared poorly both in sampling variance reduction 
and the change in the MSE relative to the 
estimated MSE procedure using the regression 
coefficient estimator. The coverage probabilities 
computed using weights generated by these 
procedures were as good or better than the 
coverage probabilities computed from the weights 
trimmed using these estimated MSE procedure 
with regression coefficients. 

The primary conclusion based on the empirical 
study results is that weight trimming can have both 
advantages and disadvantages. The advantages (for 
example, the reduction in the sampling variances) 
occurred on average for all procedures, but all 
procedures also resulted in an increase in the 
estimated sampling variance for at least some of 
the 200 replicated samples. The use of the specific 
estimator of interest (in this case the regression 
coefficient) was shown to have an important effect. 
Global trimming of sampling weights based on one 
estimator can produce potentially misleading 
results when another estimator is used in analyses. 
Therefore, the survey analyst needs to be cautious 
when trimming sampling weights because, unless 
weight trimming is conducted carefully and 
evaluated for various estimators and data items, 
larger sampling variance or substantial bias can 
result for some survey estimates. 
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Table 1. Average Percentage Change in Variance and Mean Square 
Error Based on Estimates from 200 Replicated Samples 

Procedure 

Reg Mean Weights Only 

Est. ESt. Taylor Weight 
Vat" MSE MSE Series NAEP Dist'n 

% Change in Estimated Sampling Variances 

1 2 • -6.2 -10.1 -6.9 -5.4 -4.9 
3 4 -3.6 -4.1 -5.3 -0.8 -0.6 
5 4 -2.9 -1.5 -2.2 -0.2 0.1 
3 6 -5.1 -11.1 -7.4 -3.7 -3.3 
5 6 -5.8 -10.0 -5.8 -3.6 -3.1 
7 6 -8.3 - 11.3 -7.9 -5.8 -5.4 

Avg -5.3 -8.0 -5.9 -3.2 -2.9 

% Change in Estimated Mean Square Error 

1 2* 6.1 13.5 12.1 9.0 8.8 
3 4 13.1 37.1 16.0 20.3 19.4 
5 4 8.7 29.3 16.6 14.7 14.3 
3 6 10.1 19.0 18.7 15.6 15.0 
5 6 7.4 22.3 20.0 14.8 14.3 
7 6 15.6 35.4 32.6 23.4 22.3 

Avg 10.2 26.1 19.3 16.3 15.7 

% Change = 100 * (Trimmed - Untrimmed) / Untrimmed. 

*Variables in Regression (dependent and independent) 
1 Temperature in July 6 Per capita income 
2 Temperature in January 7 Median family income 
3 Birth rate among teenagers 
4 Percentage white ages 10-17 
5 Percentage of households with telephones 

Table 2. Coverage Probabilities for CI Error Based on Variance 
Estimates from 200 Replicated Samples 

Trimming Procedure 

Reg Mean Weights Only 

Orig. Est. Est. Taylor Weight 
Vat" Wts. MSE MSE Series NAEP Dist' n 

Coverage of 95% Confidence Interval 

1 2 • 84.5 86.0 88.0 87.0 87.5 88.0 
3 4 80.0 82.5 84.0 83.0 83.5 82.5 
5 4 86.0 86.5 90.0 87.5 89.5 89.0 
3 6 85.5 87.5 88.5 88.5 88.5 88.5 
5 6 79.5 83.5 86.5 86.0 85.0 85.0 
7 6 64.0 66.0 62.5 65.0 67.5 67.5 

Coverage of 99% Confidence Interval 

1 2 ° 92.0 94.0 95.0 94.5 94.5 94.5 
3 4 91.0 92.5 94.0 92.0 92.5 93.0 
5 4 92.5 95.0 96.0 95.5 94.5 94.5 
3 6 92.5 95.5 96.5 97.0 96.0 96.0 
5 6 90.5 94.5 97.0 96.5 95.5 95.5 
7 6 77.5 79.5 79.5 82.0 80.5 80.5 

9 5 % c i - 0  a + 1.96 • 

99% CI = e, ± 2.58 • ~/Var(O) 

Variables in Regression (dependent and independent) 
1 Temperature in July 6 Per capita income 
2 Temperature in January 7 Median family income 
3 Birth rate among teenagers 
4 Percentage white ages 10-17 
5 Percentage of households with telephones 
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