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1. Introduction 
Item nonresponse in sample surveys is the failure 

to obtain a specific question that should have been 
answered. In particular, item nonresponse rate on the 
survey of the economic is usually high. This can result 
for many reasons, the most frequent being "refusals to 
answer", which can relate to the underlying data value 
(non-ignorable nonresponse) and human behavior. 
Most designs of the survey questionnaire incorporate 
procedures for following up on missing responses to 
items identified as either especially important to the 
overall quality of the survey data or with previously 
noted high nonresponse rate. For example, the design 
of the Survey of Income and Program Participation 
(SIPP) questionnaire incorporated procedures for 
following up on missing responses to the items of 
wage and salary income, income received from self- 
employment and interest and dividend income. The 
response status on these items by the same individual 
are most likely correlated. The problem of missing 
items for categorical variable has been examined from 
the perspective of modeling the mechanisms of 
nonresponse by Fay (1986), Chambers and Welsh 
(1993), Alho (1990), and S/irndal (1981). 

This paper proposes a method of adjusting item 
nonresponse in presence of callback based on a 
generalized logistic regression model that can account 
for the correlation among responses on items. The 
probability of response for any item is represented by 
a logistic regression model, in which the value of that 
item, the response status of the rest of the items and 
the available covariates, which may include the 
observed item variables for all the individuals by the 
last callback, are explanatory variables. The 
respondents are assumed to answer some or all of 
items after one or more call-backs. The parameters 
of our model can be estimated by taking a conditional 
maximum likelihood approach based on the 
respondents. This approach has the advantage of the 
simple expression of conditional logistic model. The 
estimated individual probabilities of responding are 
used in a Horvitz-Thompson type estimator to reduce 

bias in the estimation of sample means for every 
single item. 
2. The Logistic Regression for Correlated Responses 

2..__21 A Class of Conditional Logistic Models 
Let I -- {1, ..., n} be a set of indices for n 

individuals selected in a simple random sample. Let 
X, = (X~t, ..., ~ )  be the set of item outcomes from 
individual i and they suffer the nonresponse, i= 1, ..., 
n, where X, expresses the outcome of the 1 ~" item 
from individual i, the value of which becomes known 
when individual i responds for the item 1. The vector 
of covariates of individual i is denoted by Z~. Suppose 
up to J >__ 2 attempts are made to capture the data for 
an individual. Define the nonresponse indicator 
vector U u = (U~j~, ..., UijL) T, where, for 1= 1, ..., L with 
Uij~ = 1 if individual i was captured at the j~ attempt 
for the 1 ~ item, and U~j~ = 0 otherwise. 

J 
Define Yu, - ~ Uua (i= 1, ..., n; 1= 1, ..., L) for 

k,,l 

short. Then y~j~ = 1, if and only if individual i was 
captured by the j~ attempt for the 1 'h item. If Uij~ are 
correlated, the probability for Uij~= 1 not only depends 
upon Xu. and Zt but also depends on the responses for 
the rest of the items. First, consider the class of 
conditional logistic models when j = 1 

logit Pr (U m = 1 ~/~u, Xu, Zi) (1) 

- F , ,  + o , , ( x , , ,  z.) 

when j > 1 

logit Pr (Uin 1 [ -l - -  A,) 

= G (u b ÷ o+/x,,, z , )  ¢ 

(2) 

= 0  

Pr (Uo~ = 1 [ l.)ffo , Sijq, X~p Zi) = 0 if y~.,.,= 1 

where Ui / i s  U~j with the exclusion of Uij~, for j = 1, ..., 
J, s,;., = (u:, ..., T. 
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Fu is an arbitrary function of O'~' such that 

/ ,  

~. V,,,F,, (z,;~ i~ 
I,,! 

invariant under permutation of 

U,,'s, where I~ 1 is U~' with Uak = 0 for 

k • 1 , Fit is an arbitrary function of U~ t 

L 

such that E Uut Fj, 1 -~ ( i i ,  $i~-~) is invariant under 
/ - I  

permutation of U~v's, and 

where l~l is U~ l with U~j k = 0 f o r  k >  1 

Thus Fj~ is a function describing the dependence of 
item I on the response status of the other items in and 
before call-back attempt j. The function G describes 
the dependence on the outcomes X and the covariates 
Z .  

For given Fil and Fjl, from (1) and (2) we have 
the joint probability of U~j:s uniquely def'med as 
when j = 1 

Pr(U,,IXa,Z,.) 

where 

dli = E 
UUt, • • . ~k l t i  L 

uut = 0,1, l=1 .... ,L 

when j > 1 
e~(v o I s,~_,,x,,z,) 

=exp ~ Uu, IF,,(~,S,.i_,)+Gj,(X.,Z,)I 4) 
t - I  

where 

dji= ~ exp 
UIP" "" #~iI. 

0, 1 i f  Yu-t~, = 0 
u#~ = 0 if  Y~j-t.t = 1 

Equations (3) and (4) follow from an argument 
similar to that given Liang and Zeger (1989) in the 
appendix. Note that d~i and d~i are the normalizing 
constants which involve a sum of 2 L exponential terms. 

2.2 An example 
1. A special case is that where the response 

probability of item 1 in attempt j depends on the 
responses of the other item only through their number 

in attempt j (denoted by r~j~ - ~ Uo. ~ and their 
k # l  

n u m b e r  by a t t e m p t  j-1 ( d e n o t e d  by 

t,¢_,.~ = ~ Y,j-,.k )" That is, when j = 1 
k # l  

logit Pr (U m = 1 I UiJ, X u, Zi) 
- P ,  (r,,,) + C,,(X,,, Z,) 

when j > 1 

logit Pr (Uu, - 1 l U g ,  Sij_ ~, Xlp Zi) 
= Fj(ro.t. t,d_l.t ) + G.,(Xiv Z,) i f  Y,g-l.t =0 

Pr (Uo. , = 1 [ U~ ,Si~ q, Xip Z )  = 0 if Ylj-l., = 1 

When j---1, we have the joint probability of Uu 
uniquely defined as 

Pr(V,, IX,, Z,) 
(5) 

dl, 

l - I  

where B,,, = ~ U,, k 
k - I  

and we assume that Bu~=O 

Similarly, when j > 1, the joint probability of U u 
conditional on S~j.x is uniquely defined as 
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PR ( U,~ I S , ~ . ~ , Z ,  

=expI , .  ~ Uo.IFj(But,t,,_t,,)+G~,(X, pZ~)]I /d j ,  

where Uo~=O when y,j_)., = 1 
-" 0 otherwise (6) 

l - I  

Bo~ = ~ U~j k and we assume that Bij, = 0 
k-I  

We might choose the model to describe a situation 
in which some respondents are more willing to 
respond than others. Consider item I in attempt j. If 
the subject has already responded to a large number 
of items, we might expect him or her to be more 
likely to respond to item 1. We index the function F 
with the call-back attempt to allow the dependence to 
change with the call-back number. 

This type of model has been considered by Ou, 
William, Beck and Goormastic (1987) for the case 
J= l .  

r, 
If we let ~ F~(t) = 0 when Tit = 0, and 

t=0 

"#-i 

F#)=0  when Tij = ti.i-i and Fj (Bij,, ti.i-,) = 
t=t~- 1 

Fj (Bij , + tij.,), 1= 1,...,L, 
We get the following class of conditional logistic 

models. 
When j = 1 

Pr(Um=l I UJ,  Xip Z.) = e r, ( , .) .  o.a,.z,) 
1 + e r, c,o,) - o,,~,z,) 

When j > 1 

Pr(Uo. , = 11 U~, S~j_~, X,, Z,) 
e F, <.~). a. ~x,.z,) 

1 + e ~ ~';~) "a ,  ~x,,z,) 

= 0 i f  Yij-l.t  = 1 

z 
Where rij I = rij t + tij.,.t 
Here is one simple model. 

if  Y~d-l.t = 0 

Z,) = % + x e,, + (7) 

F~ (rm) - ruff, and Fj(riT~) - rut ~ for  j>  1(8) 

Therefore the characteristics X~ and covariates Zt 
affect the capture probabilities for the same way for 
each attempt. The effect of Xt is felt on Pij~ only 
through the 1 ~ characteristics Xu.. Different attempts 
may have different capture probabilities depending on 
the czu's. This may reflect varying methods at callback 
or the possibility that the respondent's probability of 
response changes after a number of calls. We can 
imagine, for example, that a respondent may develop 
some resistance after even a small number of attempts 
have been made in which case % decreases in j. Also 
notice that the number of responses in other items 
affect each item the same way. 
3. E s t i m a t i o n  P r o c e d u r e  ( C o n d i t i o n a l  M a x i m u m  

L i k e l i h o o d  Approach) 
Without loss of generality we can order the data 

so that by observation 1 through n~ are the responded 
items for the i '~ individual and n~ + 1 through L are the 
nonresponded items, we can estimate the probabilities 
based on the following 'working' conditional 
likelihood. 

Z O _ 

nj j 
U07 

I I  H I I  
i,(l~U/t) z=l i=1 

where I^ denotes the set of individuals who answer all 
the items, Is denotes the set of individuals who only 
answer some of the items,and 

Vii I = 

#u* 

1 -#~ , . l . t  

J 

where Pi.J.~,l = 1 - ~ Iz~u , and where 
k - I  

I~111 - Put = F~(u;').o.Oq. z,) l + e  

j - I  

#ij, = Po', II (1-Pod), J=2,'",/, a n d 
k=l 

e i j l  = 
G(v , / ,  , z,) 

1 + Fj,(Ui/, S,j_I) + G.,(X#, Z) 

w h e r e  
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Maximum 'working' conditional likelihood 
estimates of the parameters can be found by 
numerically maximizing the log of this function with 
respect to the parameters involved. Consider the 
assumptions of (9) and (10). Does not have a unique 
maximum. One way to solve this problem is to use 
the available additional information in conjunction 
with the likelihood equation. For computational 
advantage, we use the approach proposed by Alho 
(1991). 

Let I,t cI  be the set of individuals captured at the 
first attempt for the I t item (1-1,..., L), I~ the set of 
individuals captured at the second attempt for the I t 
item, etc. Let I~+~.~ be the set of individuals that are 
not captured for the 1 '~ item at all. Define r~! = card 
(Ij~), for 1= 1,...,L and j = 1,...,J + 1; thus n = n~ + ... + n,+ t.~ 
for 1= 1,...,L. 

Note that for the 1 'h item, given Stj.~ and U~ ~, we 
have, for j = 1,...,J 

E Uu t -Pu~ 
~, Pul 

= (n l ,  + . . .  + ns+,, ,) - 

Si,i ~ U-t 1 - ~ i j  

~, P,j, 
J ¢ !  

~, UI, 

Notice E(nj, Si0.,, Uij~)= [ ~ 1  P~J,] ; , ,  

suppose we use nj~ to estimate this. We estimate the 
expectation on the left-hand side with the observed 
value also. This yields the likelihood equations 

exp (-%., - W, Tfl ̀  - ruff ) 
ia, 

- n - ( n , , . . . .  * n . , ) ,  t - 1 , . . . ~  

Given fl~ and 6 we can thus solve for %.t, by 

taking 

c~j, -log (n-n,, -nj,) / E exp(- r -. __... Wi, fl, - ruff) 

q=l,.../,t-1,...~) 

To solve for 

t~ - (~r, ..., o~r  where a, = (~,p...,%,)r, 

for 1 -- 1,...,L 

= (or, ... ,fl~r and 6 

we use an iteration based on Newton's method. 
Differentiating the log likelihood L with respect to 

I1~ we get 

We can solve numerically for tr, fl, and 6 . 

Having calculated the estimate &, ~, 8, the 

Horvitz-Thompson type estimator was considered 
based on the requirement of unbiasedness. Define X t 

(X,,, ..., X~) T, 1= 1, ..., L. 
The true sample mean for the item 1 is 

X~ = XT1" / n w h e r e l ,  i s a v e c t o r o f n o n e s .  By 

translating &, ~, ~, into (7) and (8), we can 

calculate the estimates /2~a.~.t to get the conditional 

m 

unbiased Horvitz-Thompson type estimator of X~ 

(1 = 1,...L) as 

x-S - E 
n ~t, Ut. 

Let ¢t- - (a , I ] ,8)  be the estimates of 

¥ -- (a,13,8) subject to regularity conditions on the 

X u's and Z,'s, the constraints used to ensure 
identifiability, coverage to continuous relation between 

the c~vo's and (13 t, 5) which is satisfied by the true 

parameter vector 't • The proof for the consistency 

of the parameter estimator ¢t can be given by 

emulating the standard argument from Fahrmeir & 
Kaufmann (1985). 
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