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Introduction 
The National Center for Education Statistics' 

(NCES) School and Staffing Survey (SASS) con- 
ducted by the Census Bureau has a complex sample 
design. Schools are selected using a stratified system- 
atic PPS (unequal selection probabilities) sample de- 
sign. From this design, data are collected at the 
school and school district level. The school district is 
an aggregation unit (i.e., the district selection proba- 
bility is computed by aggregating school selection 
probabilities containing the district across the school 
strata). The probability is nonlinear with respect to 
the school sample sizes. It has been demonstrated 
(Kaufman, 1992) under the usual Balanced Half-Sam- 
ple (BHR) sample design that the BHR variance 
estimator for these district estimates can overestimate 
the variance. The apparent reason for the bias in the 
BHR estimator is that the district variances decrease 
faster than the inverse of the sample size, which BHR 
assumes. Since the bootstrap variance estimator 
doesn't necessarily make this assumption, this simula- 
tion study investigates whether a bootstrap variance 
estimator can perform better than the BHR variance 
estimator. 

Another aspect of this paper is to investigate 
whether the bootstrap variance estimator reflects the 
finite population correction generated from the SASS 
sample design without using the joint inclusion 
probabilities. If independent systematic samples are 
selected, using the original sample design, then the 
simple variance of the estimates produced for each of 
the samples will reflect the appropriate variance. In 
this situation, units with selection probabilities close 
to one will appear in each sample more often then 
units with smaller selection probabilities. Since the 
bootstrap variance estimator mimics this process 
better than the BHR variance estimator, it might 
provide a better variance estimate, when the sampling 
rates are large. 

The goal of this paper is to investigate, using a 
simulation study, whether a bootstrap variance 
estimator: 1) provides better variance estimates than 
the BHR estimator when estimates are based on 
aggregation units (school districts); and 2) reflects the 
impact of large sampling rates better than BHR. The 
proposed bootstrap variances can be computed 

using any BI-IR program without any modifica- 
tions. 

The SASS sample design for schools and school 
districts will be used for the simulation. The SASS 
district sample design will be used to study goal 1. 
Since the SASS is designed to produce State esti- 
mates, the sampling rates in small States are high; 
therefore, the SASS is a good design to demonstrate 
goal 2. Since the SASS sample design sorts the frame 
in a specific nonrandom order, four methods of 
sorting the bootstrap frame will be tested in the 
simulations. 

Design of SASS School and District Surveys 
The school survey uses NCES's public school 

Common Core of Data file as the frame. The frame 
is stratified by State, and within State by school level 
(elementary, secondary and combined). The school 
sample is selected using a systematic probability 
proportionate to size sampling procedure. The mea- 
sure of size is the square root of the number of 
teachers in the school. Before sample selection, the 
school frame is sorted by a specific nonrandom order. 
The school districts that include a sampled school 
comprise the school district sample. In order to 
simplify the computation of the district selection 
probabilities, it is important, within each stratum, to 
keep schools belonging to the same district together. 

Weighting 
The school weight for school i (W~) is: 

W i = 1/pi 

Pi: is the selection probability for school i. 

The district weight for district d (Wd) is: 
Wd - 1/(1-(1-pd~)(1-pds) (1-pdc)) 

Pde: y~ Pi 
i~Sde 

Sd~: the set of all elementary schools in district d 

Pds: ~ Pi 
i~Sds 

Sds: the set of all secondary schools in district d 

Pdc: is ~ Pi 
i~Sdc 

Sdc: is the set of all combined schools in district d 
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If Pde, Pds or Pdc is greater than or equal to one then 
the district is selected with certainty and Wo = 1. 

Balanced Half-sample Replicates 
The r th school half-sample replicate is formed using 

the usual textbook methodology (Wolter, 1985) for 
establishment surveys with more than 2 units per 
stratum. The r th district half-sample replicate is 
defined to be the set of districts that have schools in 
the r th school half-sample replicate. Since the SASS 
half-sample variances are based on 48 replicates, the 
simulations will be based on 48 half-sample repli- 
cates. 

The school replicate weight is" 
RW i = 2/pi. 

The district replicate weight is" 
RW d = 1/(1-(1-p dJ2)(1-PdJ2)(1-PdJ2)) 

The probabilities are divided by 2 because with 
half the sample, each school has half the chance of 
being selected. 

Three BHR variance estimates will be presented 
based on the methodology described above. The first 
(BHR no FPC) is the variance estimates described 
above. This estimate does not make any type of 
Finite Population Correction (FPC) adjustments. 

The other two make simple FPC adjustments. The 
second BHR variance estimate (BHR Prob FPC) 
adjusts the first variance estimator by 1-P h, where Ph 
is the average of the selection probabilities for the 
selected units within stratum h. For the district Ph'S h 
represents a State. 

The third BHR variance estimate (BHR SRS FPC) 
adjusts the first variance estimator by 1-nh/N h, where 
nh is the number of sample units in stratum h and Nh 
is the number of units on the frame in stratum h. For 
the district adjustments h represents a State. 

School-bootstrap Frame 
The idea behind the bootstrap samples is to use the 

sample weights from the selected units to estimate the 
distribution of the school and district frames. From 
the estimated school-bootstrap frame, B bootstrap 
samples can be selected. The school-bootstrap frame 
is generated in the following manner: 

For each selected school i and associated district d, 
W d bootstrap-districts (bd) are generated, as well as, 
W/Wd bootstrap-schools (bi) within each bootstrap- 
district. If Wo or Wi/W d have a noninteger component 
then a full school is generated with a reduced selec- 
tion probability and weight. As shown below, the 

bootstrap expectation of the bootstrap weights (Wbi or 
Wbd) equals the full-sample weight (W~ or Wd). The 
bi th bootstrap-school has the following measure of 
size (mbi)" 

mbi = Ibd * Ibi * 1 /Wi ,  

Ibd = 

Ib i  = 

+ .... 

1 
Cbd 

+ .... 

1 

Cbi 

if bd is an integer component of W d 
if bd is a noninteger component of W d, 

Cbd being the noninteger component 

if bi is an integer component of Wi/W d 
if bi is a noninteger component of Wl/Wd, 

Cbi being the noninteger component 

The sum of the mb#, generated from a selected 
school, equals one; so one bootstrap-school would be 
selected to represent school i, provided the bootstrap 
stratum sample size and sort order are the same as in 
the original design. 

Each bootstrap-school, bi, generated within a 
bootstrap-district, bd, has the bd th bootstrap-district's 
id. If the d ~ district has selected schools in the ele- 
mentary and secondary strata then the bd th bootstrap- 
district id generated in the elementary stratum should 
match to the bd th bootstrap-district id in the secondary 
stratum. This relationship should exist for all school 
levels that are selected for the district. This is impor- 
tant to compute the appropriate bootstrap-district 
weights. 

Bootstrap Sample Size 
The bootstrap sample size is usually chosen to 

provide unbiased variance estimates. When the 
original sample is a simple random sample of size n 
then Efon (1982) shows a bootstrap sample size 
should be n-1. Sitter (1990) has computed the boot- 
strap sample size for the Rao-Hartley-Cochran 
method for PPS sampling. A variation of this result 
is used in this simulation. The Sitter's bootstrap 
sample size (n*) is the sample size which make the 
following quantity closest to 1: 

n n n 
(E (Ng*2-N*))/(Y,(N,2-N))*(N2-E N,2)/(N**(N*-I)) 
g=l g=l g=l 

n*" is the bootstrap stratum sample size 
g: represents a sampling interval in the stratum 
Ng*: is the number of bootstrap-schools in the g~ 

sampling interval, where the bootstrap-schools are 
in a random order 

n: is the sample size in the stratum 
N*: is the number of bootstrap-schools in the stratum 
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N :  
Ng: 

is the number of schools in the stratum 
is the number of schools in the gth sampling 

interval, where the schools are in their original 
order; either a random order for the Rao-Hartley 
-Cochran method or the specific nonrandom order 
for the SASS method 

n* can not be calculated directly. The quantity 
above is computed for each n* from n-10 to n. The n* 
that is closest to one is used in the bootstrap selec- 
tion. 

The variation to Sitter's formulation is in the 
computation of Ng and Ng. Two modifications are 
made. The first occurs when either Ibd or Ibi are not 
equal to 1. Instead, of using l, as Sitter does when 
counting units; Ibd * Ibi is used to calculate Ng. To 
reduce the incidence of Ibd * Ibi being not equal to l, 
the districts are ignored when determining n*. This is 
accomplished by generating a bootstrap frame as 
described above, assuming W d = 1 (i.e., W d never has 
a noninteger component). The second modification is 
due to the fact that a school or bootstrap-school can 
be in two sampling intervals. When this happens, Ng 

, 

and Ng are not increased by one. Instead, they are in- 
creased by the proportion of the unit that actually 
goes into the sampling interval. If either Ibd or Ibi are 
not equal to l, and the bootstrap-school is in two 
sampling intervals then Ng* is increased by the 
product of the two modifications described above. If 
n is large, n* should not be affected much by these 
modifications. 

strap-schools are sorted by the bootstrap-district ran- 
dom number; and within the bootstrap-district, the 
bootstrap-schools are sorted by the bootstrap-school 
random number. 

Sort Method 2 
If the weights are relatively uniform within the set 

of paired schools, method 1 may underestimate the 
true variance. Sort method 2, tries to adjust for this. 
Sitter (1990) shows when the sample weights are 
uniform that his n* will equal n-1. Hence, for this 
simulation, when n* is between n and n-2, it will be 
assumed the stratum weights are relatively uniform 
and sort method 1 may underestimate the true vari- 
ance. Instead, the bootstrap-schools are sorted by the 
bootstrap-district random number; and within the 
bootstrap-district, the bootstrap-schools are sorted by 
the bootstrap-school random number. If n* < n-2, for 
a stratum, then the bootstrap-schools are randomized 
as described in sort method 1. 

Sort Method 3 
Sort method 3 is the same as sort method 2, except 

that the weights are assumed to be uniform when n* 
is between n and n-3, instead of sort method 2's n 
and n-2. In this case, the bootstrap-schools are sorted 
by the bootstrap-district random number; and within 
the bootstrap-district, the bootstrap-schools are sorted 
by the bootstrap-school random number. If n* < n-3, 
for a stratum, then the bootstrap-schools are random- 
ized as described in sort method 1. 

Sorting the School-Bootstrap Frame 
If the bootstrap variance estimate is to work 

correctly, it is important that the school-bootstrap 
frame be randomized in an appropriate manner. In 
one extreme, when the bootstrap frame is sorted by 
the order of selection from the original sample and 
n*=n, the variance estimate will be zero. In the other 
extreme, when the bootstrap frame is sorted random- 
ly, the variance estimate ignores the original ordering 
and may overestimate the variance. Four orderings 
will be tested in this simulation study. 

Sort Method 1 
Schools within a stratum are sorted by order of 

selection. Next, schools are consecutively paired 
within each stratum. Each pair is assigned a random 
number. The bootstrap-districts and bootstrap-schools 
generated within each pair of schools are assigned 
bootstrap-district and bootstrap-school random num- 
bers, respectively. Bootstrap-schools are sorted by the 
school pair random number; within each pair, boot- 

Sort Method 4 
Sort method 4 does not use the school pairings; 

instead, bootstrap-schools are placed in a district and 
school random order. With this sort, the bootstrap- 
schools are sorted by the bootstrap-district random 
number; and within the bootstrap-district, the boot- 
strap-schools are sorted by the bootstrap-school 
random number. 

Bootstrap Sample Selection 
Given the bootstrap frame, mbi as the measures of 

size, stratum bootstrap sample sizes and bootstrap- 
school ordering, select the bootstrap sample using the 
same sampling scheme as in the original sample. The 
bootstrap frame must be randomize with each sample 
selection. Bootstrap-schools, generated from noncerta- 
inty schools, with measures of size larger than the 
sampling interval are not removed from the sampling 
process. If a bootstrap-school is selected more than 
once, the bootstrap-school weight is multiplied by the 
number of times it is selected. 
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Number of Replicates and Bootstraps 
Since the SASS BHR variances are based on 48 

replicates, 48 bootstrap samples are computed for 
each simulation sample. Given the time it take to 
select a set of bootstrap samples, only 60 simulation 
samples are used. 

Bootstrap Weights 
The bootstrap-school weight, Wbi , is: 

Wb i -- Ib d * Ibi * Mbi/Pb i 

Mbi" is the number of times the bi th bootstrap- 
school is selected 

Pb~: is the bootstrap selection probability for the 
bi ~ bootstrap-school 

E,(X Wbi)=Z Ibd * Ibi ='f'~ Wi, as desired. 
bi bi i 

E," is expectation over the bootstrap samples 

Since the available data is defined by the districts 
selected in the original sample, a bootstrap-school 
weight indexed by i (BWi) is required: 

B W i = ~ Wbi 
bisSia 

SiB: is the set of all biEi selected in the B th 
bootstrap sample. 

The bootstrap-district weights, Wbd is" 

Wbd -- Ibd/(1-( 1-Pbde)( 1-Pbds)(1-Pbdc)) 

Pbde" is Z Pbi 
biESbde 

Sbd e" is the set of all elementary bootstrap-schools 
in bootstrap-district pd 

Pbds: is Z Pbi 
biESbds 

Sbds: is the set of all secondary bootstrap-schools 
in bootstrap-district bd 

Pbdc" is ~ Pbi 
biESbdc 

Sbde: is the set of all combined bootstrap-schools 
in bootstrap-district bd 

If Pbde, Pbds or Pbdc is greater than or equal to one 
then the bootstrap-district is selected with certainty 
and Wbd = 1. 

E , ( Z  Wbd)--Z Ibd--Z W d, as desired. 
bd bd d 

Since the available data is defined by the districts 
selected in the original sample, a bootstrap district 

weight indexed by d (BWd) is required: 
B W d = ~ Wbd 

bdESdB 
SdB: the set of all bdEd selected in the B th bootstrap 

sample. 

Sample Estimate 
For each of the simulation samples, totals, averages 

and ratios are computed within a number of the States 
and the District of Columbia, using variables avail- 
able on the sample frame. For district samples, two 
averages are computed using teachers and schools; 
two ratios are computed using students, teachers and 
schools; and five totals are computed using students, 
teachers, graduates, schools and districts. For the 
school samples, two averages are computed using 
teachers and students; one ratio is computed using 
students and teachers; three totals are computed using 
students, teachers and schools. For each of the 60 
simulation samples, the sample estimates and respec- 
tive sample variances are computed for both district 
and school samples. An estimate of the true variance 
for the sample estimates can be obtained by comput- 
ing the simple variance of the sample estimates 
across the 60 simulations. The bootstrap and BHR 
sample variance can now be compared with the 
estimate of the true variance. 

A number of other analysis statistics are used. They 
are described below. 

Analysis Statistics 
Coverage Rates 

To measure the accuracy of the variance estimates, 
a one sigma two tailed coverage rate is computed by 
determining what proportion of the time the popula- 
tion estimate is within the respective confidence 
interval. If the variance estimates are appropriate then 
the coverage rates should be close .68. 

Coverage Rate Bias (Bias) 
Bias = R e - R t 

Re: is the coverage rate based or either a bootstrap 
or BHR variance estimate 

R," is an estimate of the true coverage rate. For a 
given estimator, it is based on the simple 
variance of the simulation estimates for that 
estimator 

Tables 1-6 presents the coverage rate Bias's. 

CV of Variance Estimate (CV) 
To measure the variability of the variance estimate, 
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the coefficient of variation (CV) of the variance 
estimate is calculated. 

6O 
CV = [(1/59) Z (W t - W)2] l/2/w 

t=-I 
Vt: is the variance estimate for the fh 

simulation estimate, 

m 

V: is the average variance estimate across 
the 60 simulation samples. 

Table 7 presents the CV of the variance estimates 
averaged across the States included in the study. 

Results 
Due to the time to complete the simulations, 

simulations for 4 large States (more than 2,000 
schools) did not include bootstrap sort 1 or sort 2. 
First, tables 1-6 are discussed which are based on the 
25 States in the simulations. The worst variance 
estimator is BHR no FPC. A large percent of the 
time the one o coverage rates are better 2~ coverage 
rates than one o coverage rates (i.e., Bias GE 0.14). 
The worst case is in table 5 with 68% of the esti- 
mates being better 2o coverage rates than one 
coverage rates. One reason for this is because the 
sampling rates are very high in some States. The 
other two BHR variance estimate are better; but in 4 
out of the 6 tables, there are still a reasonable number 
of estimates that are better 2o coverage rates. In table 
2, 24% of the estimates are better 2o coverage rates. 
In general, the BHR variances tend to be overesti- 
mates. 

An additional problem with the two FPC adjusted 
BHR variance estimates is that a number of the 
coverage rates are better .Scy coverage rates than one 
cy coverage rates (i.e., Bias LT -0.14). The worst 
cases are found in table 4, where the Prob and SRS 
adjusted estimates have 60% and 36% of the cover- 
age rates being better .5o coverage rates, respectively. 

The best bootstrap variance estimator is the boot- 
strap sort 4 estimator, with the bootstrap sort 3 
estimator a close second. There are still some cover- 
age rates that are better 2o coverage rates, but now 
the worst case is table 2 with 16%. The bootstrap 
variances for school estimates do tend to be underes- 
timates, while district estimates tend to be overesti- 
mates. However, except for school ratios, the boot- 
strap sort 4 estimator appears to be better than any 
of the BHR estimators. For school ratios, BHR prob 
FPC or BHR SRS FPC appear to be best. Some of 
the sort 4 estimates are better .5o coverage rates, but 
except for school ratios, the BHR FPC adjusted 

estimates are still worst overall with respect to this 
point. The worst bootstrap sort 4 coverage rates are 
in table 3 (school ratios) with 20% being better .56 
coverage rates. However, the absolute bias of the 
standard errors for these 20%, averages less t h a n -  
0.04. Since the -0.04 bias is so small, even for school 
ratios bootstrap sort 4 performs well. 

If there is a desire to make an FPC adjustment for 
large sampling rates, the bootstrap sort 4 appears to 
be the best variance estimator from those tested. 
However, if the desire is to always provide a conser- 
vative variance estimate then the BHR no FPC is the 
most conservative. 

The major drawback with Bootstrap variances is 
that the calculation of the bootstrap replicate weights 
is far more complicated and computer intensive than 
the calculation of BHR replicate weights. However, 
this work only needs to be done once. Given the 
bootstrap weights, any BHR variance program can 
compute the bootstrap variance estimates, without any 
special adjustments. The bootstrap weights use most 
of the sample cases in each replicate, so when 
computing variances for ratios, there is not as much 
need to worry about zero denominators, as is the case 
with BHR variances. 

When the sampling rates are lower one expects the 
BHR No FPC to provide good results. Although not 
presented here, this is true for the States in this study 
with low sampling rates. For these States, the boot- 
strap sort 4 also provides good results, especially for 
school estimates. 

Table 7 presents the CV of the variance estimates. 
For the most part, the BHR CV's are smaller than the 
Bootstrap CV's. However, the differences are small. 
For practical purposes, BHR and Bootstrap CV's are 
the same. One reason for this result is that the BHR 
replicates are only partially balanced. 
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Table 1 -- Frequency Distribution of 1 o Coverage Rate Bias (Bias) 
for School Averages by Type of Variance Estimator 

Table 4 -- Frequency Distribution of 1 o Coverage Rate Bias (Bias) 
for District Averages by Type of Variance Estimator 

Bias Type of Variance Estimator Bias Type of Variance Estimator 

i Bootstrap I BHR I i Bootstrap i BHR I 
Col Pct Sort 1 I Sort 2 I Sort 3 I Sort 4 I Prob FPC I SRS FPC I No FPC I Col Pet Sort 1 I Sort 2 I Sort 3 I Sort 4 Prob FPC I SRS FPC I No FPC I 

i : + -  - + - -  - +  - +  ~- + - -  ~ . . . . . . . . .  + . . . . . . . . . .  + ~ ~ 19 0 19 05 1 16 oo 16 oo , 60 oo I 36 oo I 0 oo I L T - 0 . 1 4 1  I 3 8 . 1 0  I 9 . 5 2  I 0 . 0 0 1  0 . 0 0  8 . 0 o ,  8 . 0 0 1  8 . 0 0 1  L T - 0 . 1 4 1  , . . . . . . .  
i ÷ ~- + -+ -+- +- -+ --+ 

+ -  + -  - +  0-- ÷ - +  ~ [ - 0  14 0 o) I 38  10  1 38  10  1 32  oo I 32  oo I 24 00 I 32  00 I 2 0  00 1 [-0.14., 0.0) 52.38 I 61.90 I 56.001 56.00 I 16.001 16.001 4.00 1 . . . . . . . . . . .  

+ - -  + ~ 64 00 1 56 00 I 4 4  00 [0  0 0 1 4 )  33 33  ~ 33 33 1 44  oo I 44  oo I 16 oo I 28  oo I 44  oo I [0.0, 0.14) 9.52 I 23.81 32.00 1 32.00 1 . . . . . . .  , . . . . . .  
- +  +__  + -  - +  - - +  

- +  ~ - + -  ~ 8 oo I 8 oo I 0 oo I 4 oo I 36 oo , ~- + -  + . . . . . . . .  + ~- ~ 20 oo I 44 oo I CE 0 142 9 52 1 9 52 , . GE 0 . 1 4  2 I 0 . 0 0 1  4 . 7 6  I 1 2 . 0 0 1  1 2 . 0 0  I 1 2 . 0 0 ,  . . . . . . . . .  
I + ........ ~ ......... + ........ + ......... ÷ ........ + ........ + ÷ ........ + ........ + ........ + ........ + ........ + ........ + ........ + 

Table 2 -- Frequency Distribution of 1 o Coverage Rate Bias (Bias) 
for School Totals by Type of Variance Estimator 

Bias %hrpe of Variance Estimator 

Bootstrap iProb FPC I SRS FPC I No FPC Col Pct Sort 1 I Sort 2 I Sort 3 I Sort 4 i 
+ . . . .  4 + -  k + -  k - +  

L T - 0 . 1 4 1  ~ 4 2 . 8 6  1 9 . 5 2 1  8 . 0 0 1  4 . 0 0 1  8 . 0 0  I 8 . 0 0 1  0 . 0 0 1  

+ - -  ~ 44 oo ~ 52 ~7 ~ ~2 oo ~ 8 o o i  ~2 oo , [ - 0 . 1 4 . ,  0 . 0 )  3 3 . 3 3  1 5 7 . 1 4  l • ~ • ~ • a • • 

T + - - -  ÷ - -  T - +  + - - ÷  [ 0 . 0 ,  0 . 1 4 )  2 3 . 8 1 1  2 3 . 8 1  1 3 6 . 0 0  28.oo I 5 6 . o o  I 6 o . o o  I 4 8 . 0 0  , 
+ -  - - +  

+ -  ! + -  ~ 24 00 I 24 00 I 40  00 1 GE 0 . 1 4 2  ~ 0 . 0 0  1 9 . 5 2  1 1 2 . 0 0  1 1 6 . 0 0  , . . . 
+ . . . . . . . .  + . . . . . . . .  + . . . . . . . .  + . . . . . . . .  + . . . . . . . .  + . . . . . . . .  + . . . . . . . . .  k 

Table 5 -- Frequency Distribution of 1 ~ Coverage Rate Bias (Bias) 
for District Totals by Type of Variance Estimator 

Bias Type of Variance Estimator 

Bootstrap i Prob FPC I SRS FPC I No FPC , Col Pct i Sort 1 I Sort 2 I Sort 3 I Sort 4 
-+- +- -+ _ -+ 

+ -  ~i 20 oo I 32 oo I 16 oo I 0 oo , , oo, . . . .  
- +  

+ - -  + -  ~ 4 0 0  1 -+ -+- + ~ 40 00 1 60 00 1 48 00 , . [ - 0 . 1 4 . ,  0 . 0 )  I 5 2 - 3 8  I 5 2 . 3 8  I 4 4 . 0 0  , . . . 
-+- +- -+ +- +- -+ -+ 

[ 0 . 0 ,  0 . 1 4 )  [ 2 8 . 5 7 1  2 3 . 8 1 1  3 6 . 0 0  I 3 6 . 0 0 1  8 . 0 0 1  3 6 . 0 0  1 2 8 . 0 0 1  
-+- +- -+ -+ 

- - +  + -  ~ 4 oo I 0 oo I 0 oo I 68 oo I GE 0.142 ~ 4.76 1 4.76 1 4.00, . . . .  
_+ ........ + ........ + ........ + ........ + ........ + ........ + ........ + 

Table 3 -- Frequency Distribution of 1 o Coverage Rate Bias (Bias) 
for School Ratios by Type of Variance Estimator 

Bias Type of Variance Estimator 
i Bootstrap I BHR I 

Col Pet , Sort 1 I Sort 2 I Sort 3 I Sort 4 IProb FPC I SRS FPC I No FPC I 
+- --+ 

- + -  -~ * -  ~ o oo I o oo I o oo , L T - 0 . 1 4 1  6 6 . 6 7  1 5 2 . 3 8  1 2 0 . 0 0 3  I 2 0 . 0 0 3  , . . . 
[ -+- -~ ......... + ........ + [ --+ 

[ - 0 . 1 4 . ,  0 . 0 )  3 3 . 3 3  1 3 8 . 1 0 1  6 4 . 0 0 1  6 4 . 0 0 1  4 8 . 0 0  4 8 . 0 0  1 1 6 . 0 0 ,  
[ - + -  _+_ ÷ -  - +  ÷ -  _ - ÷  

[ 0 . 0 ,  0 . 1 4 )  0 . 0 0  ] 9 . 5 2  1 1 6 . 0 0  1 1 6 . 0 0  1 4 4 . 0 0  1 4 4 . 0 0  1 6 0 . 0 0  , 

GE 0 . 1 4 2  0 . 0 0 1  0 . 0 0 1  0 . 0 0 1  0 . 0 0 1  8 . 0 0 1  8 . 0 0 ,  2 4 . 0 0  1 
÷ ........ +- ! + ........ + ........ + ........ + ........ + 

Table 6 -- Frequency Distribution of 1 o Coverage Rate Bias (Bias) 
for District Ratios by Type of Variance Estimator 

Bias Type of Variance Estimator 
I Bootstrap I BHR I 

Col Pct I Sort 1 I Sort 2 I Sort 3 I Sort 4 IProb FPC I SRS FPC I No FPC I 
÷ - + +- -+ ~- - +- -+ -+ 

L T - o . ~ 4 ~  | o . o o - I  o .oo  I o .oo  I o .oo  I 2 8 . o o  I 4 . o o  I o .oo  I 
+- - +- -+ -+ 

÷ ' + ~ 36 oo I 56 oo I 56 oo I 0 oo I [-0.14., 0.0) I 42.86 1 42.86 1 32.00, . . . .  
+- - +- -+ -+ 

÷ ~- + -  ~ 60 o o i  16 oo I 40 00 I 40  00 1 [0.0, 0.14) I 57-14 1 52.38 1 64.00 1 . . . .  
÷ k +- -+ ~- +- -+ -+ 

GE 0 . 1 4 2  I 0 . 0 0 1  4 . 7 6  I 4 . 0 0 1  4 . 0 0  I 0 . 0 0  I 0 . 0 0  I 6 0 . 0 0  1 
÷ ......... ~ ........ + ......... k ........ + ........ + ......... k ........ + 

i Coverage rates in this category are better .50 coverage rates 

than a coverage rates 

2 Coverage rates in this category are better 2~ coverage rates 

than a coverage rates 

3 The absolute bias of the standard errors in these States, 

averages less than -0.04 

Table 7 -- CV of the Variance (CV) by Type of Estimate 
and Type of Variance Estimator 

CV Type of Estimate 
Type of School I District 
Variance AVE RATIO TOTAL I AVE RATIO 

+ + 

B No FPC i 0.31 0.32 0.31 I 0.40 0.28 
H SRS FPC i 0.31 0.32 0.32 I 0.43 0.35 
R PROB FPC I 0 . 31 

+ 

B Sort 4 I 0.30 

I 0.31 
0 Sort 2 0.34 

I 0 . 3 3  

0.32 0.32 I 0.43 0.35 
+ 

0.35 0.32 I 0.50 0.36 
0 Sort 3 0.35 0.33 I 0.52 0.36 

0.36 0.36 I 0.52 0.34 
T Sort 1 0.39 0.36 1 0.53 0.34 

TOTAL 

0.37 
0.38 
0.42 

0.35 
0.36 
0.36 
0.35 


