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I. Introduction 
This paper presents the results of an empirical 

examination of relative variances of selected 
statistics estimated from a complex sample survey. 
This study looked at the data gathered during the 
1987-88 Schools and Staffing Survey (SASS) 
which was a national survey of elementary and 
secondary schools conducted by the National 
Center for Education Statistics (NCES). The 
target populations for the SASS were school 
administrators (principals and heads), and 
classroom teachers in public and private 
elementary/secondary schools. The survey design 
consisted of two parallel but essentially separate 
schemes, one for the public schools and one for 
private (nonpublic) schools. The components of 
S ASS were (1) Survey of Teacher Demand and 
Shortage (TDS), (2) Survey of Schools (3) Survey 
of School Administrators, and (4) Teacher Survey. 
Approximately 13,000 schools and administrators, 
65,000 teachers, and 5,600 Local Education 
Agencies (LEA's) composed the SASS sample. 

NCES prepared eight SASS data files 
corresponding to the four types of surveys of both 
public and private schools, each of which contains 
a set of 48 replicate weights. These weights were 
designed to produce variances using balanced half- 
sample variance estimation. However, these 
replicate weights can be utilized only by users who 
have half-sample replication software available. 
The purpose of this task is to develop and test a 
new procedure using generalized variance functions 
for approximating the sampling error associated 
with an estimate of interest. 

There were a large number of estimates of 
interest for the SASS. Estimates of proportions, 
totals and averages at the national level for various 

subdomains (i.e., region, school level, minority 
status, school size, community status and 
combinations of these) were made. Examples 
include (1) the total number of administrators who 
eamed a bachelors degree, (2) the proportion of 
Hispanic students (regardless of race) (3) the 
number of PTE teachers, and (4) the average hours 
of teaching basic subjects in private schools. 

The school sample was a single stage sample 
stratified by state by school level in public schools, 
and state by affiliation by school level in private 
school. Schools were systematically selected using 
a probability proportionate to size (pps) algorithm. 

Within the first stage school sample, a second 
stage teacher sample was selected stratified by 
teacher experience level (teachers with three or 
fewer years of experience were classified into the 
new teacher stratmn, and all other teachers were 
classified into the experienced teacher stratum). 
Within a school, teachers were selected 
systematically with equal probability. 

The goal of this effort was to produce 
generalized variance functions for each of the 
Schools and Staffing Surveys. The generalized 
variances are designed for the user who does not 
have half-sample replication software available, but 
requires an approximation to the sampling error 
associated with his/her estimates of interest. 

II. Method of Generalizing Variances 
A generalized variance function (GVF) is a 

mathematical model describing the relationship 
between the variance or relative variance 
(relvariance) of a survey estimator and its 
expectation. If the parameters of the model can be 
estimated from past data or from a small subset of 
the survey items, then variance estimates can be 
produced for all survey items by evaluating the 
model at the survey estimates, rather than by direct 
computations. 
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Denote the estimator of a certain attribute of 
interest as Xhat and let X = E{Xhat} denote its 
expectation. Then the relvariance can be expressed 
as follows: 

v = V a r ( X h a t ) / x  

Most of the GVFs to be considered are based on 
the premise that the relative variance is a 
decreasing function of the magnitude of the 
expectation X. 
A simple model which exhibits this property is: 

V 2 = A + B/X, with B > 0. (Model 1) 
The parameters A and B are unknown and to be 
estimated. Experience has shown that Model 1 
often provides an adequate description of the 
relationship between V 2 and X. In fact, the Census 
Bureau has used this model for its Current 
Population Survey since 1947. 

However, in an attempt to achieve an even 
better fit to the data than is possible with Model 1, 
the following are altemative forms of relvariance 
models which may be considered 

V 2 = A + B/X + C/X 2 

log(V 2) = A + B log(X) 
V2= (A + B X) -1 

V2= (A + B X + CX2) -1 

where 
V 2 = Relative variance 

(Model 2) 
(Model 3) 
(Model 4) 
(Model 5) 

X = Expectation of the selected 
estimate 

A,B,C = Unknown parameters to be 
estimated 

Unfortunately, there is very little theoretical 
justification for any of the models discussed above. 
There is some limited justification for Model 1 
(Wolter (1985). 

survey 

III. Technical Approach 
As a first step, a pilot test was conducted 

and based on the pilot test conclusions an 
exploratory analysis procedure was determined. 
The findings from the exploratory analysis 
determined which fitted model was to be used as 
the GVF. 
a. Pilot Test 

Step 1: Direct estimates of totals for 
selected student and teacher 
headcount variables from the 

School and the Teacher Demand 
and Shortage surveys at the 
national level (by sector and 
community type) were calculated. 
These estimates were chosen as a 
provisional group of similar items 
to be used for model estimation. 
A direct calculation of the 
variance of each of the totals using 
a balanced half-sample replication 
technique was used to derive the 
relvariance and the coefficient of 
variation (CV). Scatter plots of 
the log of the estimate versus the 
log of the CV were used to form 
"final" groups of statistics that 
followed a common model. These 
f'mal groups were formed by 
simply removing from the 
provisional group those statistics 
that appeared to follow a different 
model than the majority of 
statistics in the group, and added 
other statistics, originally outside 
the provisional group, that 
appeared consonant with the group 
model. 

As noted in Section II, there is no rigorous 
theoretical justification for any of the models that 
relate V 2 to X. Because we were unable to be 
quite specific about any of the models and their 
attending assumptions, it was not possible to 
construct, or even to contemplate, optimum 
estimators of the model parameters. Discussions of 
optimality would require an exact model and an 
exact statement of the error structure of the 
estimator Vhat 2 and Xhat. In the absence of a 
completely specified model, we attempted to 
achieve a good empirical fit to the data (Xhat, 
Vhat 2) as we considered alternative fitting 
methodologies. 

Step 2: Using the calculated estimates and 
their CV's, un-weighted nonlinear 
models using SAS NLIN 
procedure were fit in order to 
produce least-squares estimates of 
the parameters of all five of the 
relvariance models described in 
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section II above for each of the six 
subdomains groups (made up of 
combinations of public/private and 
urban/suburban/rural). The 
iterative method specified for the 
NLIN procedure was the modified 
Gauss-Newton method which 
regresses the residuals onto the 
partial derivatives of the model 
with respect to the parameters 
until the estimates converge. 

Step 3: The results of the NLIN runs were 
summarized in terms of the RMSE 
and bias by quartile. 

Step 4: An overlay of the scatterplot of 
the CV's versus the log of the 
estimate onto the fitted regression 
curve was plotted for each of the 
fitted models described in step 2. 

Step 5: Finally, the results of steps 3 and 
step 4 were examined to help 
determine a viable subset of 
models to be used for the overall 
analysis. This determination was 
made by looking at both how well 
the data fit the model and how 
well the shape of the curve was in 
accord with reality. 

Preliminary Results." 
Both models 2 and 5 produced inappropriate 
shapes for the regression curve fit to the data 
in terms of a danger that extrapolation could 
lead to a result that was far from in accord 
with reality. Of the remaining models (1, 3 
and 4), model 1 was the worst because the 
shape of the regression curve often dropped off 
too fast and leveled off too quickly. The 
shape of the curve for Model 3 seemed 
reasonable and appeared to fit fairly well 
overall, but had a higher RMSE than model 4. 
Also, model 3 resulted in a conservative (but 
possibly very large) predicted CV for small 
estimates. Model 4 had the best overall 
RMSE, largely due to a downward curvature 
on the left side of the regression curve. Model 
4 also resulted in a possible bias 
(understatement) of CV's for large estimates. 
(See Figures 1 through 5 for examples 
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representative of the regression curve plots 
produced during the pilot test. See Figures 6 
and 7 as examples where model 4 had lower 
RMSE than model 3 and Figures 7 and 8 as 
examples where model 4 had lower RMSE 
than model 3.) 
Preliminary Conclusions 
Models 2 and 5 were to be excluded from any 
further analysis based on the inappropriate 
shape of the regression curve fit to the data. 
More data would be needed for small estimates 
to choose between models 3 and 4. Model 1 
would be included for further analysis because 
it is the only model with limited theoretical 
justification. It was therefore decided to fit all 
three viable models (models 1, 3 and 4) using 
three altemative fitting methodologies: 
unweighted, weighted, and iteratively 
reweighted non-linear regression approach. 
Exploratory. Analysis 

Step 1: 

Step 2: 

Step 3: 

Percentages, totals and averages 
for selected variables from each of 
the four SASS data sets (School, 
School Administrator, Teacher, 
Teacher Demand & Shortage 
(TDS)) for various subdomains 
(i.e., region, state, school level, 
minority status, school size, 
c o m m u n i t y  s t a t u s  a n d  
combinations of these) were 
calculated. 
CV's for the estimates in step 1 
were calculated using balanced 
half-sample replication techniques. 
Plots of the log of the estimate 
versus the log of the CV were 
used to finalize groups to be used 
for model estimation. 
Using the calculated estimates in 
each of the subdomain groups 
from step 1 and their respective 
CV's from step 2, nonlinear 
models using SAS NLIN 
procedure were fit in order to 
produce ordinary least-squares 
(OLS), weighted least squares 
(WLS), and iteratively re-weighted 
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Step 4: 

least squares (IRLS) estimates of 
the parameters and respective R- 
squared values for each of the 
relvariance models l, 3 and 4 
described in section II. The WLS 
procedure was specified to work 
with the sum of squares which 
weighted inversely to the square of 
the observed CV and the IRLS 
method was specified to work with 
the sum of squares which 
weighted inversely to the square of 
the predicted CV. The minimizing 
values from the OLS technique 
were used as starting values in the 
WLS and IRLS runs. A plot of 
the regression curve fit for each of 
the three methods (OLS, WLS, 
IRLS) of fitting a model was used 
to determine which method for 
fitting the model worked best. 
Based on these plots, the IRLS 
technique of model fitting proved 
to be best. The OLS technique 
gave too much weight to the small 
estimates whose corresponding 
relvariance was usually large and 
unstable and the WLS technique 
was a better procedure because it 
gave the least reliable terms in the 
sum of the squares a reduced 
weight, but the IRLS technique fit 
most of the data better than either 
of the other two techniques. A 
plot showing the R 2 values of one 
model versus another model was 
used to determine which GVF 
model fit best. (See separate 
volumes for the above mentioned 
plots). 

An out of sample test was 
performed to validate conclusions 
made from step 3. 

Findings: The following are the selected IRLS 
models within each survey based on 
the exploratory analysis: 

-- The School Survey 
Student Totals - GVF Model 3 was selected 
Teacher Totals - GVF Model 3 was selected 
Averages - GVF Model 1 was selected 
-- The TDS Survey 
Student Totals - GVF Model 1 was selected 
Teacher Totals - GVF Model 1 was selected 
Averages - GVF Model 3 was selected 
-- The School Administrator Survey 
Admin Percents - GVF Model 1 was selected 
Admin Totals - GVF Model 1 was selected 
Averages - GVF Model 3 was selected 
-- The Teacher  Survey 
Teacher Percents - GVF Model 1 was selected 
Teacher Totals - GVF Model 1 was selected 
-- Salary Averages 

- GVF Model 3 was selected 

Standard Error of a Ratio 
To estimate the relative variance of an 

estimated ratio, R = X/Y, where Y is an estimator 
of the total number of individuals in a certain 
subpopulation and X is an estimator of the number 
of individuals in another subpopulation, use 

V2R = V2x_ V2v 
where the relvariances of X and Y are read from 
the appropriate GVF table. This formula has been 
shown to produce useful approximations. The 
approximation is appropriate when the correlation 
between the ratio X/Y and the denominator Y is 
close to 0; the approximation is an overestimate if 
the correlation is positive. 
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